PaVeToABCD[expr]
converts suitable PaVe functions to direct Passarino-Veltman functions (A0
, A00
, B0
, B1
, B00
, B11
, C0
, D0
). PaVeToABCD
is nearly the inverse of ToPaVe2
.
Overview, ToPaVe, ToPaVe2, A0, A00, B0, B1, B00, B11, C0, D0.
[0, {pp}, {m1^2, m2^2}]
PaVe
= PaVeToABCD[%] ex
\text{B}_0\left(\text{pp},\text{m1}^2,\text{m2}^2\right)
\text{B}_0\left(\text{pp},\text{m1}^2,\text{m2}^2\right)
// FCI // StandardForm
ex
(*B0[pp, m1^2, m2^2]*)
[0, {SPD[p1], 0, SPD[p2]}, {m1^2, m2^2, m3^2}]
PaVe
= PaVeToABCD[%] ex
\text{C}_0\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
\text{C}_0\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
// FCI // StandardForm
ex
(*C0[0, Pair[Momentum[p1, D], Momentum[p1, D]], Pair[Momentum[p2, D], Momentum[p2, D]], m3^2, m2^2, m1^2]*)
[0, 0, {SPD[p1], 0, SPD[p2]}, {m1^2, m2^2, m3^2}]
PaVe
= PaVeToABCD[%] ex
\text{C}_{00}\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
\text{C}_{00}\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
// FCI // StandardForm
ex
(*PaVe[0, 0, {0, Pair[Momentum[p1, D], Momentum[p1, D]], Pair[Momentum[p2, D], Momentum[p2, D]]}, {m3^2, m2^2, m1^2}]*)