PaVeToABCD[expr] converts suitable PaVe functions to
direct Passarino-Veltman functions (A0, A00,
B0, B1, B00, B11,
C0, D0). PaVeToABCD is nearly the
inverse of ToPaVe2.
Overview, ToPaVe, ToPaVe2, A0, A00, B0, B1, B00, B11, C0, D0.
PaVe[0, {pp}, {m1^2, m2^2}]
ex = PaVeToABCD[%]\text{B}_0\left(\text{pp},\text{m1}^2,\text{m2}^2\right)
\text{B}_0\left(\text{pp},\text{m1}^2,\text{m2}^2\right)
ex // FCI // StandardForm
(*B0[pp, m1^2, m2^2]*)PaVe[0, {SPD[p1], 0, SPD[p2]}, {m1^2, m2^2, m3^2}]
ex = PaVeToABCD[%]\text{C}_0\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
\text{C}_0\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
ex // FCI // StandardForm
(*C0[0, Pair[Momentum[p1, D], Momentum[p1, D]], Pair[Momentum[p2, D], Momentum[p2, D]], m3^2, m2^2, m1^2]*)PaVe[0, 0, {SPD[p1], 0, SPD[p2]}, {m1^2, m2^2, m3^2}]
ex = PaVeToABCD[%]\text{C}_{00}\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
\text{C}_{00}\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)
ex // FCI // StandardForm
(*PaVe[0, 0, {0, Pair[Momentum[p1, D], Momentum[p1, D]], Pair[Momentum[p2, D], Momentum[p2, D]]}, {m3^2, m2^2, m1^2}]*)