FeynCalc manual (development version)

D0

D0[p10, p12, p23, p30, p20, p13, m1^2, m2^2, m3^2, m4^2 ] is the Passarino-Veltman D0D_0 function. The convention for the arguments is that if the denominator of the integrand has the form ([q2m12][(q+p1)2m22][(q+p2)2m32][(q+p3)2m42])([q^2-m1^2] [(q+p1)^2-m2^2] [(q+p2)^2-m3^2] [(q+p3)^2-m4^2]), the first six arguments of D0 are the scalar products p10=p12p10 = p1^2, p12=(p1p2)2p12 = (p1-p2)^2, p23=(p2p3)2p23 = (p2-p3)^2, p30=p32p30 = p3^2, p20=p22p20 = p2^2, p13=(p1p3)2p13 = (p1-p3)^2.

See also

Overview, B0, C0, PaVe, PaVeOrder.

Examples

D0[p10, p12, p23, p30, p20, p13, m1^2, m2^2, m3^2, m4^2]

D0(p10,p12,p23,p30,p20,p13,m12,m22,m32,m42)\text{D}_0\left(\text{p10},\text{p12},\text{p23},\text{p30},\text{p20},\text{p13},\text{m1}^2,\text{m2}^2,\text{m3}^2,\text{m4}^2\right)

PaVeOrder[D0[p10, p12, p23, p30, p20, p13, m1^2, m2^2, m3^2, m4^2], PaVeOrderList -> {p13, p20}]

D0(p10,p30,p23,p12,p13,p20,m22,m12,m42,m32)\text{D}_0\left(\text{p10},\text{p30},\text{p23},\text{p12},\text{p13},\text{p20},\text{m2}^2,\text{m1}^2,\text{m4}^2,\text{m3}^2\right)

PaVeOrder[%]

D0(p10,p12,p23,p30,p20,p13,m12,m22,m32,m42)\text{D}_0\left(\text{p10},\text{p12},\text{p23},\text{p30},\text{p20},\text{p13},\text{m1}^2,\text{m2}^2,\text{m3}^2,\text{m4}^2\right)