D0[p10, p12, p23, p30, p20, p13, m1^2, m2^2, m3^2, m4^2 ]
is the Passarino-Veltman D_0 function. The convention for the arguments is that if the denominator of the integrand has the form ([q^2-m1^2] [(q+p1)^2-m2^2] [(q+p2)^2-m3^2] [(q+p3)^2-m4^2]), the first six arguments of D0
are the scalar products p10 = p1^2, p12 = (p1-p2)^2, p23 = (p2-p3)^2, p30 = p3^2, p20 = p2^2, p13 = (p1-p3)^2.
Overview, B0, C0, PaVe, PaVeOrder.
[p10, p12, p23, p30, p20, p13, m1^2, m2^2, m3^2, m4^2] D0
\text{D}_0\left(\text{p10},\text{p12},\text{p23},\text{p30},\text{p20},\text{p13},\text{m1}^2,\text{m2}^2,\text{m3}^2,\text{m4}^2\right)
[D0[p10, p12, p23, p30, p20, p13, m1^2, m2^2, m3^2, m4^2], PaVeOrderList -> {p13, p20}] PaVeOrder
\text{D}_0\left(\text{p10},\text{p30},\text{p23},\text{p12},\text{p13},\text{p20},\text{m2}^2,\text{m1}^2,\text{m4}^2,\text{m3}^2\right)
[%] PaVeOrder
\text{D}_0\left(\text{p10},\text{p12},\text{p23},\text{p30},\text{p20},\text{p13},\text{m1}^2,\text{m2}^2,\text{m3}^2,\text{m4}^2\right)