FeynCalc manual (development version)

C0

C0[p10, p12, p20, m1^2, m2^2, m3^2] is the scalar Passarino-Veltman C0C_0 function. The convention for the arguments is that if the denominator of the integrand has the form ([q2m12][(q+p1)2m22][(q+p2)2m32])([q^2-m1^2] [(q+p1)^2-m2^2] [(q+p2)^2-m3^2]), the first three arguments of C0 are the scalar products p10=p12p10 = p1^2, p12=(p1p2).(p1p2)p12 = (p1-p2).(p1-p2), p20=p22p20 = p2^2.

See also

Overview, B0, D0, PaVe, PaVeOrder.

Examples

C0[a, b, c, m12, m22, m32]

C0(a,b,c,m12,m22,m32)\text{C}_0(a,b,c,\text{m12},\text{m22},\text{m32})

C0[b, a, c, m32, m22, m12] // PaVeOrder

C0(a,b,c,m12,m22,m32)\text{C}_0(a,b,c,\text{m12},\text{m22},\text{m32})

PaVeOrder[C0[b, a, c, m32, m22, m12], PaVeOrderList -> {c, a}]

C0(c,a,b,m32,m12,m22)\text{C}_0(c,a,b,\text{m32},\text{m12},\text{m22})