PaVe[i, j, ..., {p10, p12, ...}, {m1^2, mw^2, ...}]
denotes the invariant (and scalar) Passarino-Veltman integrals, i.e. the coefficient functions of the tensor integral decomposition. Joining plist
and mlist
gives the same conventions as for A0
, B0
, C0
, D0
. Automatic simplifications are performed for the coefficient functions of two-point integrals and for the scalar integrals.
Some of the PaVe’s reduce to special cases with PaVeAutoReduce
to True
[0, 0, {pp}, {m^2, M^2}, PaVeAutoReduce -> True] PaVe
\frac{\left(m^2-2 m M+M^2-\text{pp}\right) \left(m^2+2 m M+M^2-\text{pp}\right) \;\text{B}_0\left(\text{pp},m^2,M^2\right)}{4 (1-D) \;\text{pp}}-\frac{\text{A}_0\left(m^2\right) \left(m^2-M^2+\text{pp}\right)}{4 (1-D) \;\text{pp}}+\frac{\text{A}_0\left(M^2\right) \left(m^2-M^2-\text{pp}\right)}{4 (1-D) \;\text{pp}}