PaVe[i, j, ..., {p10, p12, ...}, {m1^2, mw^2, ...}]
denotes the invariant (and scalar) Passarino-Veltman integrals, i.e. the
coefficient functions of the tensor integral decomposition. Joining
plist and mlist gives the same conventions as
for A0, B0, C0, D0.
Automatic simplifications are performed for the coefficient functions of
two-point integrals and for the scalar integrals.
Some of the PaVe’s reduce to special cases with
PaVeAutoReduceto True
PaVe[0, 0, {pp}, {m^2, M^2}, PaVeAutoReduce -> True]\frac{\left(m^2-2 m M+M^2-\text{pp}\right) \left(m^2+2 m M+M^2-\text{pp}\right) \;\text{B}_0\left(\text{pp},m^2,M^2\right)}{4 (1-D) \;\text{pp}}-\frac{\text{A}_0\left(m^2\right) \left(m^2-M^2+\text{pp}\right)}{4 (1-D) \;\text{pp}}+\frac{\text{A}_0\left(M^2\right) \left(m^2-M^2-\text{pp}\right)}{4 (1-D) \;\text{pp}}