FeynCalc manual (development version)

B1

B1[pp, ma^2, mb^2] the Passarino-Veltman B1B_1-function. All arguments are scalars and have dimension mass squared.

See also

Overview, B0, B00, B11, PaVe, PaVeReduce.

Examples

B1[SPD[p], m^2, M^2]

(m2M2+p2)  B0(p2,m2,M2)2p2+A0(m2)2p2A0(M2)2p2-\frac{\left(m^2-M^2+p^2\right) \;\text{B}_0\left(p^2,m^2,M^2\right)}{2 p^2}+\frac{\text{A}_0\left(m^2\right)}{2 p^2}-\frac{\text{A}_0\left(M^2\right)}{2 p^2}

B1[SPD[p], m^2, M^2, BReduce -> False]

B1(p2,m2,M2)\text{B}_1\left(p^2,m^2,M^2\right)

B1[SP[p], m^2, m^2]

12  B0(p2,m2,m2)-\frac{1}{2} \;\text{B}_0\left(\overline{p}^2,m^2,m^2\right)

B1[SPD[p], m^2, m^2, BReduce -> False]

B1(p2,m2,m2)\text{B}_1\left(p^2,m^2,m^2\right)

B1[m^2, m^2, 0]

A0(m2)2m2B0(m2,0,m2)\frac{\text{A}_0\left(m^2\right)}{2 m^2}-\text{B}_0\left(m^2,0,m^2\right)

B1[m^2, m^2, 0, BReduce -> False]

B1(m2,m2,0)\text{B}_1\left(m^2,m^2,0\right)

B1[0, 0, m^2]

B1(0,0,m2)\text{B}_1\left(0,0,m^2\right)

B1[pp, SmallVariable[SMP["m_e"]^2], Subsuperscript[m, 2, 2]]

(ppm22)  B0(pp,me2,m22)2  ppA0(m22)2  pp-\frac{(\text{pp}-m_2^2) \;\text{B}_0\left(\text{pp},m_e^2,m_2^2\right)}{2 \;\text{pp}}-\frac{\text{A}_0(m_2^2)}{2 \;\text{pp}}