B00[pp, ma^2, mb^2] is the Passarino-Veltman B_{00}-function, i.e., the coefficient
function of the metric tensor. All arguments are scalars and have
dimension mass squared.
B00[SPD[p], m^2, M^2]\frac{\left(m^2-2 m M+M^2-p^2\right) \left(m^2+2 m M+M^2-p^2\right) \;\text{B}_0\left(p^2,m^2,M^2\right)}{4 (1-D) p^2}+\frac{\text{A}_0\left(M^2\right) \left(m^2-M^2-p^2\right)}{4 (1-D) p^2}-\frac{\text{A}_0\left(m^2\right) \left(m^2-M^2+p^2\right)}{4 (1-D) p^2}
B00[SPD[p], m^2, m^2]-\frac{\left(4 m^2-p^2\right) \;\text{B}_0\left(p^2,m^2,m^2\right)}{4 (1-D)}-\frac{\text{A}_0\left(m^2\right)}{2 (1-D)}
B00[SPD[p], m^2, M^2, BReduce -> False]\text{B}_{00}\left(p^2,m^2,M^2\right)
B00[0, m^2, m^2]-\frac{m^2 \;\text{B}_0\left(0,m^2,m^2\right)}{1-D}-\frac{\text{A}_0\left(m^2\right)}{2 (1-D)}
B00[SmallVariable[M^2], m^2, m^2]-\frac{m^2 \;\text{B}_0\left(M^2,m^2,m^2\right)}{1-D}-\frac{\text{A}_0\left(m^2\right)}{2 (1-D)}