FeynCalc manual (development version)

FCFeynmanProjectiveQ

FCFeynmanProjectiveQ[int, x] checks if the given Feynman parameter integral (without prefactors) depending on x[1], x[2], … is a projective form.

It is similar to FCFeynmanProjectivize but unlike the former it simply returns True or False depending on whether the integral is projective or not.

See also

Overview, FCFeynmanParametrize, FCFeynmanPrepare, FCFeynmanProjectivize.

Examples

int = SFAD[{p3, mg^2}] SFAD[{p3 - p1, mg^2}] SFAD[{{0, -2 p1 . q}}]

\frac{1}{(\text{p3}^2-\text{mg}^2+i \eta ) ((\text{p3}-\text{p1})^2-\text{mg}^2+i \eta ) (-2 (\text{p1}\cdot q)+i \eta )}

fp = FCFeynmanParametrize[int, {p1, p3}, Names -> x, Indexed -> True, FCReplaceD -> {D -> 4 - 2 ep}, 
   Simplify -> True, Assumptions -> {mg > 0, ep > 0}, FinalSubstitutions -> {SPD[q] -> qq, mg^2 -> mg2}]

\left\{(x(2) x(3))^{3 \;\text{ep}-3} \left((x(2)+x(3)) \left(\text{mg2} x(2) x(3)+\text{qq} x(1)^2\right)\right)^{1-2 \;\text{ep}},-\Gamma (2 \;\text{ep}-1),\{x(1),x(2),x(3)\}\right\}

FCFeynmanProjectiveQ[fp[[1]], x]

\text{True}

FCFeynmanProjectiveQ[(x[1] + x[2])^(-2 + 2*ep)/(mb2*(x[1]^2 + x[1]*x[2] + x[2]^2))^ep, x]

\text{True}

Feynman parametrization derived from propagator representation should be projective in most cases. However, arbitrary Feynman parameter integral do not necessarily have this property.

FCFeynmanProjectiveQ[x[1]^(x - 1) (x[2])^(y - 1), x]

\text{False}