FCFeynmanParametrize[int, {q1, q2, ...}] introduces
Feynman parameters for the multi-loop integral int.
The function returns {fpInt,pref,vars}, where
fpInt is the integrand in Feynman parameters,
pref is the prefactor free of Feynman parameters and
vars is the list of integration variables.
If the chosen parametrization contains a Dirac delta multiplying the
integrand, it will be omitted unless the option DiracDelta
is set to True.
By default FCFeynmanParametrize uses normalization that
is common in multi-loop calculations, i.e. \frac{1}{i \pi^{D/2}} or \frac{1}{\pi^{D/2}} per loop for Minkowski or
Euclidean/Cartesian integrals respectively.
If you want to have the standard \frac{1}{(2 \pi)^D} normalization or yet
another value, please set the option
FeynmanIntegralPrefactor accordingly. Following values are
available
The calculation of D-dimensional Minkowski integrals and D-1-dimensional Cartesian integrals is straightforward.
To calculate a D-dimensional
Euclidean integral (i.e. an integral defined with the Euclidean metric
signature (1,1,1,1) you need to write
it in terms of FVD, SPD, FAD,
SFAD etc. and set the option "Euclidean" to
True.
The function can derive different representations of a loop integral.
The choice of the representation is controlled by the option
Method. Following representations are available
FCFeynmanParametrize can also be employed in conjunction
with FCFeynmanParameterJoin, where one first joins suitable
propagators using auxiliary Feynman parameters and then finally
integrates out loop momenta.
For a proper analysis of a loop integral one usually needs the
U and F polynomials separately. Since
internally FCFeynmanParametrize uses
FCFeynmanPrepare, the information available from the latter
is also accessible to FCFeynmanParametrize.
By setting the option FCFeynmanPrepare to
True, the output of FCFeynmanPrepare will be
added the the output of FCFeynmanParametrize as the 4th
list element.
Overview, FCFeynmanPrepare, FCFeynmanProjectivize, FCFeynmanParameterJoin, SplitSymbolicPowers.
1-loop tadpole
FCFeynmanParametrize[FAD[{q, m}], {q}, Names -> x]\left\{1,-\left(m^2\right)^{\frac{D}{2}-1} \Gamma \left(1-\frac{D}{2}\right),\{\}\right\}
FCFeynmanParametrize[FAD[{q, m}], {q}, Names -> x, EtaSign -> True]\left\{1,-\Gamma \left(1-\frac{D}{2}\right) \left(m^2-i \eta \right)^{\frac{D}{2}-1},\{\}\right\}
Massless 1-loop 2-point function
FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x]\left\{(x(1)+x(2))^{2-D} \left(-p^2 x(1) x(2)\right)^{\frac{D}{2}-2},\Gamma \left(2-\frac{D}{2}\right),\{x(1),x(2)\}\right\}
FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, EtaSign -> True]\left\{(x(1)+x(2))^{2-D} \left(-p^2 x(1) x(2)-i \eta \right)^{\frac{D}{2}-2},\Gamma \left(2-\frac{D}{2}\right),\{x(1),x(2)\}\right\}
With p^2 replaced by pp
and D set to 4 - 2 Epsilon
FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp,
FCReplaceD -> {D -> 4 - 2 Epsilon}]\left\{(x(1)+x(2))^{2 \varepsilon -2} (-\text{pp} x(1) x(2))^{-\varepsilon },\Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
Standard text-book prefactor of the loop integral measure
FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp,
FCReplaceD -> {D -> 4 - 2 Epsilon}, FeynmanIntegralPrefactor -> "Textbook"]\left\{(x(1)+x(2))^{2 \varepsilon -2} (-\text{pp} x(1) x(2))^{-\varepsilon },i 2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
Same integral but with the Euclidean metric signature
FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp,
FCReplaceD -> {D -> 4 - 2 Epsilon}, FeynmanIntegralPrefactor -> "Textbook", "Euclidean" -> True]\left\{(x(1)+x(2))^{2 \varepsilon -2} (\text{pp} x(1) x(2))^{-\varepsilon },2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
A tensor integral
FCFeynmanParametrize[FAD[{q, m}] FAD[{q - p, m2}] FVD[q, mu] FVD[q, nu], {q},
Names -> x, FCE -> True]\left\{(x(1)+x(2))^{-D} \left(m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2)\right)^{\frac{D}{2}-2} \left(x(2)^2 \Gamma \left(2-\frac{D}{2}\right) p^{\text{mu}} p^{\text{nu}}-\frac{1}{2} \Gamma \left(1-\frac{D}{2}\right) g^{\text{mu}\;\text{nu}} \left(m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2)\right)\right),1,\{x(1),x(2)\}\right\}
1-loop master formulas for Minkowski integrals (cf. Eq. 9.49b in Sterman’s An introduction to QFT)
SFAD[{{k, 2 p . k}, M^2, s}]
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1,
FCReplaceD -> {D -> n}](k^2+2 (k\cdot p)-M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{n/2} (-1)^s \Gamma \left(s-\frac{n}{2}\right) \left(M^2+p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}
FVD[k, \[Mu]] SFAD[{{k, 2 p . k}, M^2, s}]
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1,
FCReplaceD -> {D -> n}]k^{\mu } (k^2+2 (k\cdot p)-M^2+i \eta )^{-s}
\left\{1,-\frac{i \pi ^{n/2} (-1)^s p^{\mu } \Gamma \left(s-\frac{n}{2}\right) \left(M^2+p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}
FVD[k, \[Mu]] FVD[k, \[Nu]] SFAD[{{k, 2 p . k}, M^2, s}]
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1,
FCReplaceD -> {D -> n}]k^{\mu } k^{\nu } (k^2+2 (k\cdot p)-M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{n/2} (-1)^s \left(M^2+p^2\right)^{\frac{n}{2}-s} \left(p^{\mu } p^{\nu } \Gamma \left(s-\frac{n}{2}\right)-\frac{1}{2} \left(M^2+p^2\right) g^{\mu \nu } \Gamma \left(-\frac{n}{2}+s-1\right)\right)}{\Gamma (s)},\{\}\right\}
1-loop master formulas for Euclidean integrals (cf. Eq. 9.49a in Sterman’s An introduction to QFT)
SFAD[{{k, 2 p . k}, -M^2, s}]
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, "Euclidean" -> True,
FeynmanIntegralPrefactor -> I](k^2+2 (k\cdot p)+M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{D/2} \Gamma \left(s-\frac{D}{2}\right) \left(M^2-p^2\right)^{\frac{D}{2}-s}}{\Gamma (s)},\{\}\right\}
FVD[k, \[Mu]] SFAD[{{k, 2 p . k}, -M^2, s}]
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> I,
FCReplaceD -> {D -> n}, "Euclidean" -> True]k^{\mu } (k^2+2 (k\cdot p)+M^2+i \eta )^{-s}
\left\{1,-\frac{i \pi ^{n/2} p^{\mu } \Gamma \left(s-\frac{n}{2}\right) \left(M^2-p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}
FVD[k, \[Mu]] FVD[k, \[Nu]] SFAD[{{k, 2 p . k}, -M^2, s}]
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> I,
FCReplaceD -> {D -> n}, "Euclidean" -> True]k^{\mu } k^{\nu } (k^2+2 (k\cdot p)+M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{n/2} \left(M^2-p^2\right)^{\frac{n}{2}-s} \left(\frac{1}{2} \left(M^2-p^2\right) g^{\mu \nu } \Gamma \left(-\frac{n}{2}+s-1\right)+p^{\mu } p^{\nu } \Gamma \left(s-\frac{n}{2}\right)\right)}{\Gamma (s)},\{\}\right\}
1-loop massless box
FAD[p, p + q1, p + q1 + q2, p + q1 + q2 + q3]
FCFeynmanParametrize[%, {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]\frac{1}{p^2.(p+\text{q1})^2.(p+\text{q1}+\text{q2})^2.(p+\text{q1}+\text{q2}+\text{q3})^2}
\left\{(x(1)+x(2)+x(3)+x(4))^{2 \varepsilon } \left(-2 x(1) x(3) (\text{q1}\cdot \;\text{q2})-2 x(1) x(4) (\text{q1}\cdot \;\text{q2})-2 x(1) x(4) (\text{q1}\cdot \;\text{q3})-\text{q1}^2 x(1) x(2)-\text{q1}^2 x(1) x(3)-\text{q1}^2 x(1) x(4)-2 x(4) x(2) (\text{q2}\cdot \;\text{q3})-2 x(1) x(4) (\text{q2}\cdot \;\text{q3})-\text{q2}^2 x(3) x(2)-\text{q2}^2 x(4) x(2)-\text{q2}^2 x(1) x(3)-\text{q2}^2 x(1) x(4)-\text{q3}^2 x(4) x(2)-\text{q3}^2 x(1) x(4)-\text{q3}^2 x(3) x(4)\right)^{-\varepsilon -2},\Gamma (\varepsilon +2),\{x(1),x(2),x(3),x(4)\}\right\}
3-loop self-energy with two massive lines
SFAD[{{p1, 0}, {m^2, 1}, 1}, {{p2, 0}, {0, 1}, 1}, {{p3, 0}, {0, 1}, 1},
{{p2 + p3, 0}, {0, 1}, 1}, {{p1 - Q, 0}, {m^2, 1}, 1}, {{p2 - Q, 0}, {0, 1}, 1},
{{p2 + p3 - Q, 0}, {0, 1}, 1}, {{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]
FCFeynmanParametrize[%, {p1, p2, p3}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]\frac{1}{(\text{p1}^2-m^2+i \eta ).(\text{p2}^2+i \eta ).(\text{p3}^2+i \eta ).((\text{p2}+\text{p3})^2+i \eta ).((\text{p1}-Q)^2-m^2+i \eta ).((\text{p2}-Q)^2+i \eta ).((\text{p2}+\text{p3}-Q)^2+i \eta ).((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}
\left\{(x(1) x(2) x(3)+x(1) x(4) x(3)+x(2) x(5) x(3)+x(4) x(5) x(3)+x(1) x(6) x(3)+x(5) x(6) x(3)+x(1) x(7) x(3)+x(5) x(7) x(3)+x(1) x(8) x(3)+x(2) x(8) x(3)+x(4) x(8) x(3)+x(5) x(8) x(3)+x(6) x(8) x(3)+x(7) x(8) x(3)+x(1) x(2) x(4)+x(2) x(4) x(5)+x(1) x(4) x(6)+x(4) x(5) x(6)+x(1) x(2) x(7)+x(2) x(5) x(7)+x(1) x(6) x(7)+x(5) x(6) x(7)+x(1) x(2) x(8)+x(2) x(4) x(8)+x(2) x(5) x(8)+x(1) x(6) x(8)+x(4) x(6) x(8)+x(5) x(6) x(8)+x(2) x(7) x(8)+x(6) x(7) x(8))^{4 \varepsilon } \left(x(2) x(3) x(5)^2 m^2+x(2) x(4) x(5)^2 m^2+x(3) x(4) x(5)^2 m^2+x(1)^2 x(2) x(3) m^2+x(1)^2 x(2) x(4) m^2+x(1)^2 x(3) x(4) m^2+2 x(1) x(2) x(3) x(5) m^2+2 x(1) x(2) x(4) x(5) m^2+2 x(1) x(3) x(4) x(5) m^2+x(3) x(5)^2 x(6) m^2+x(4) x(5)^2 x(6) m^2+x(1)^2 x(3) x(6) m^2+x(1)^2 x(4) x(6) m^2+2 x(1) x(3) x(5) x(6) m^2+2 x(1) x(4) x(5) x(6) m^2+x(2) x(5)^2 x(7) m^2+x(3) x(5)^2 x(7) m^2+x(1)^2 x(2) x(7) m^2+x(1)^2 x(3) x(7) m^2+2 x(1) x(2) x(5) x(7) m^2+2 x(1) x(3) x(5) x(7) m^2+x(1)^2 x(6) x(7) m^2+x(5)^2 x(6) x(7) m^2+2 x(1) x(5) x(6) x(7) m^2+x(2) x(5)^2 x(8) m^2+x(3) x(5)^2 x(8) m^2+x(1)^2 x(2) x(8) m^2+x(1)^2 x(3) x(8) m^2+x(1) x(2) x(3) x(8) m^2+x(1) x(2) x(4) x(8) m^2+x(1) x(3) x(4) x(8) m^2+2 x(1) x(2) x(5) x(8) m^2+2 x(1) x(3) x(5) x(8) m^2+x(2) x(3) x(5) x(8) m^2+x(2) x(4) x(5) x(8) m^2+x(3) x(4) x(5) x(8) m^2+x(1)^2 x(6) x(8) m^2+x(5)^2 x(6) x(8) m^2+x(1) x(3) x(6) x(8) m^2+x(1) x(4) x(6) x(8) m^2+2 x(1) x(5) x(6) x(8) m^2+x(3) x(5) x(6) x(8) m^2+x(4) x(5) x(6) x(8) m^2+x(1) x(2) x(7) x(8) m^2+x(1) x(3) x(7) x(8) m^2+x(2) x(5) x(7) x(8) m^2+x(3) x(5) x(7) x(8) m^2+x(1) x(6) x(7) x(8) m^2+x(5) x(6) x(7) x(8) m^2-Q^2 x(1) x(2) x(3) x(5)-Q^2 x(1) x(2) x(4) x(5)-Q^2 x(1) x(3) x(4) x(5)-Q^2 x(1) x(2) x(3) x(6)-Q^2 x(1) x(2) x(4) x(6)-Q^2 x(1) x(3) x(4) x(6)-Q^2 x(1) x(3) x(5) x(6)-Q^2 x(2) x(3) x(5) x(6)-Q^2 x(1) x(4) x(5) x(6)-Q^2 x(2) x(4) x(5) x(6)-Q^2 x(3) x(4) x(5) x(6)-Q^2 x(1) x(2) x(3) x(7)-Q^2 x(1) x(2) x(4) x(7)-Q^2 x(1) x(3) x(4) x(7)-Q^2 x(1) x(2) x(5) x(7)-Q^2 x(1) x(3) x(5) x(7)-Q^2 x(2) x(3) x(5) x(7)-Q^2 x(2) x(4) x(5) x(7)-Q^2 x(3) x(4) x(5) x(7)-Q^2 x(1) x(2) x(6) x(7)-Q^2 x(1) x(4) x(6) x(7)-Q^2 x(1) x(5) x(6) x(7)-Q^2 x(2) x(5) x(6) x(7)-Q^2 x(4) x(5) x(6) x(7)-Q^2 x(1) x(2) x(3) x(8)-Q^2 x(1) x(2) x(4) x(8)-Q^2 x(1) x(3) x(4) x(8)-Q^2 x(1) x(2) x(5) x(8)-Q^2 x(1) x(3) x(5) x(8)-Q^2 x(1) x(2) x(6) x(8)-Q^2 x(2) x(3) x(6) x(8)-Q^2 x(1) x(4) x(6) x(8)-Q^2 x(2) x(4) x(6) x(8)-Q^2 x(3) x(4) x(6) x(8)-Q^2 x(1) x(5) x(6) x(8)-Q^2 x(2) x(5) x(6) x(8)-Q^2 x(3) x(5) x(6) x(8)-Q^2 x(2) x(3) x(7) x(8)-Q^2 x(2) x(4) x(7) x(8)-Q^2 x(3) x(4) x(7) x(8)-Q^2 x(2) x(5) x(7) x(8)-Q^2 x(3) x(5) x(7) x(8)-Q^2 x(2) x(6) x(7) x(8)-Q^2 x(4) x(6) x(7) x(8)-Q^2 x(5) x(6) x(7) x(8)\right)^{-3 \varepsilon -2},\Gamma (3 \varepsilon +2),\{x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8)\}\right\}
An example of using FCFeynmanParametrize together with
FCFeynmanParameterJoin
props = {SFAD[{p1, m^2}], SFAD[{p3, m^2}], SFAD[{{0, 2 p1 . n}}],
SFAD[{{0, 2 (p1 + p3) . n}}]}\left\{\frac{1}{(\text{p1}^2-m^2+i \eta )},\frac{1}{(\text{p3}^2-m^2+i \eta )},\frac{1}{(2 (n\cdot \;\text{p1})+i \eta )},\frac{1}{(2 (n\cdot (\text{p1}+\text{p3}))+i \eta )}\right\}
intT = FCFeynmanParameterJoin[{{props[[1]] props[[2]], 1, x},
props[[3]] props[[4]], y}, {p1, p3}]\left\{\frac{1}{(\left(-x(1) m^2-x(2) m^2+\text{p1}^2 x(1)+\text{p3}^2 x(2)\right) y(1)+2 (n\cdot \;\text{p1}) y(2)+(2 (n\cdot \;\text{p1})+2 (n\cdot \;\text{p3})) y(3)+i \eta )^4},6 y(1),\{x(1),x(2),y(1),y(2),y(3)\}\right\}
Here the Feynman parameter variables x_i and y_i are independent from each other, i.e. we have \delta(1-x_1-x_2-x_3) \times \delta(1-y_1-y_2-y_3). This gives us much more freedom when exploiting the Cheng-Wu theorem.
FCFeynmanParametrize[intT[[1]], intT[[2]], {p1, p3}, Indexed -> True,
FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[n] -> 1, m -> 1}, Variables -> intT[[3]]]\left\{y(1) \left(x(1) x(2) y(1)^2\right)^{3 \;\text{ep}-2} \left(y(1) \left(x(1) x(2)^2 y(1)^2+x(1)^2 x(2) y(1)^2+x(2) y(2)^2+x(1) y(3)^2+x(2) y(3)^2+2 x(2) y(2) y(3)\right)\right)^{-2 \;\text{ep}},\Gamma (2 \;\text{ep}),\{x(1),x(2),y(1),y(2),y(3)\}\right\}
In the case that we need U and F
polynomials in addition to the normal output (e.g. for HyperInt)
(SFAD[{{0, 2*k1 . n}}]*SFAD[{{0, 2*k2 . n}}]*SFAD[{k1, m^2}]*
SFAD[{k2, m^2}]*SFAD[{k1 - k2, m^2}])
out = FCFeynmanParametrize[%, {k1, k2}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FCFeynmanPrepare -> True]\frac{1}{(\text{k1}^2-m^2+i \eta ) (\text{k2}^2-m^2+i \eta ) ((\text{k1}-\text{k2})^2-m^2+i \eta ) (2 (\text{k1}\cdot n)+i \eta ) (2 (\text{k2}\cdot n)+i \eta )}
\left\{(x(3) x(4)+x(5) x(4)+x(3) x(5))^{3 \varepsilon -1} \left(m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right)^{-2 \varepsilon -1},-\Gamma (2 \varepsilon +1),\{x(1),x(2),x(3),x(4),x(5)\},\left\{x(3) x(4)+x(5) x(4)+x(3) x(5),m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5),\left( \begin{array}{ccc} x(1) & \frac{1}{(2 (\text{k1}\cdot n)+i \eta )} & 1 \\ x(2) & \frac{1}{(2 (\text{k2}\cdot n)+i \eta )} & 1 \\ x(3) & \frac{1}{(\text{k1}^2-m^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{k1}-\text{k2})^2-m^2+i \eta )} & 1 \\ x(5) & \frac{1}{(\text{k2}^2-m^2+i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(3)+x(4) & -x(4) \\ -x(4) & x(4)+x(5) \\ \end{array} \right),\left\{x(1) \left(-n^{\text{FCGV}(\text{mu})}\right),x(2) \left(-n^{\text{FCGV}(\text{mu})}\right)\right\},-m^2 (x(3)+x(4)+x(5)),1,0\right\}\right\}
From this output we can easily extract the integrand, its x_i-independent prefactor and the two Symanzik polynomials
{integrand, pref} = out[[1 ;; 2]]
{uPoly, fPoly} = out[[4]][[1 ;; 2]]\left\{(x(3) x(4)+x(5) x(4)+x(3) x(5))^{3 \varepsilon -1} \left(m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right)^{-2 \varepsilon -1},-\Gamma (2 \varepsilon +1)\right\}
\left\{x(3) x(4)+x(5) x(4)+x(3) x(5),m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right\}
Symbolic propagator powers are fully supported
SFAD[{I k, 0, -1/2 + ep}, {I (k + p), 0, 1}, EtaSign -> -1]
v1 = FCFeynmanParametrize[%, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep},
FinalSubstitutions -> {SPD[p] -> 1}]\frac{1}{(-k^2-i \eta )^{\text{ep}-\frac{1}{2}}.(-(k+p)^2-i \eta )}
\left\{(-x(1)-x(2))^{3 \;\text{ep}-\frac{7}{2}} x(2)^{\text{ep}-\frac{3}{2}} (-x(1) x(2))^{\frac{3}{2}-2 \;\text{ep}},\frac{(-1)^{\text{ep}+\frac{1}{2}} \Gamma \left(2 \;\text{ep}-\frac{3}{2}\right)}{\Gamma \left(\text{ep}-\frac{1}{2}\right)},\{x(1),x(2)\}\right\}
An alternative representation for symbolic powers can be obtained
using the option SplitSymbolicPowers
SFAD[{I k, 0, -1/2 + ep}, {I (k + p), 0, 1}, EtaSign -> -1]
v2 = FCFeynmanParametrize[%, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep},
FinalSubstitutions -> {SPD[p] -> 1}, SplitSymbolicPowers -> True]\frac{1}{(-k^2-i \eta )^{\text{ep}-\frac{1}{2}}.(-(k+p)^2-i \eta )}
\left\{x(2)^{\text{ep}-\frac{1}{2}} \left(\left(\frac{1}{2} (1-2 \;\text{ep})+\frac{1}{2} (4-2 \;\text{ep})-1\right) x(1) (-x(1)-x(2))^{3 \;\text{ep}-\frac{7}{2}} (-x(1) x(2))^{\frac{1}{2}-2 \;\text{ep}}+\left(2 \;\text{ep}+\frac{1}{2} (2 \;\text{ep}-1)-3\right) (-x(1)-x(2))^{3 \;\text{ep}-\frac{9}{2}} (-x(1) x(2))^{\frac{3}{2}-2 \;\text{ep}}\right),\frac{(-1)^{\text{ep}+\frac{1}{2}} \Gamma \left(2 \;\text{ep}-\frac{3}{2}\right)}{\Gamma \left(\text{ep}+\frac{1}{2}\right)},\{x(1),x(2)\}\right\}
Even though the parametric integrals evaluate to different values, the product of the integral and its prefactor remains the same
Integrate[Normal[Series[v1[[1]] /. x[1] -> 1, {ep, 0, 0}]] /. x[1] -> 1, {x[2], 0, Infinity}]
Normal@Series[v1[[2]] %, {ep, 0, 0}]\frac{2}{5}
-\frac{4 i}{15}
Integrate[Normal[Series[v2[[1]] /. x[1] -> 1, {ep, 0, 0}]] /. x[1] -> 1, {x[2], 0, Infinity}]
Normal@Series[v2[[2]] %, {ep, 0, 0}]-\frac{1}{5}
-\frac{4 i}{15}
Calculate the simplest divergent triangle integral from QCDLoop
FCClearScalarProducts[];
SPD[r] = 0;
SPD[s] = 0;
SPD[r, s] = -1/2;
int = FAD[{q, 0}, {q - r, 0}, {q - s, 0}]\frac{1}{q^2.(q-r)^2.(q-s)^2}
ToPaVe[int, q]i \pi ^2 \;\text{C}_0(0,0,1,0,0,0)
fp = FCFeynmanParametrize[int, {q}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FeynmanIntegralPrefactor -> "LoopTools"]\left\{(-x(2) x(3))^{-\text{ep}-1} (x(1)+x(2)+x(3))^{2 \;\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}
intRaw = Integrate[fp[[1]] /. x[2] -> 1, {x[1], 0, Infinity}, Assumptions -> {ep < 0, x[3] >= 0}]-\frac{(-x(3))^{-\text{ep}-1} (x(3)+1)^{2 \;\text{ep}}}{2 \;\text{ep}}
Reintroduce the correct i \eta-prescription to get the imaginary part right
intRes = Integrate[intRaw, {x[3], 0, Infinity}, Assumptions -> {ep < 0}] /. (-1)^(-ep) -> (-1 - I eta)^(-ep)\frac{(-1-i \;\text{eta})^{-\text{ep}} \Gamma (-\text{ep})^2}{2 \;\text{ep} \Gamma (-2 \;\text{ep})}
res = (Series[fp[[2]] intRes, {ep, 0, 0}] // Normal) /. Log[-1 - I eta] -> Log[1] - I Pi\frac{1}{\text{ep}^2}+\frac{i \pi }{\text{ep}}-\frac{\pi ^2}{2}
Compare to the known result
resLit = Series[ScaleMu^(2 ep)/ep^2 1/pp^2 (-pp - I eta)^(-ep), {ep, 0, 0}] /. Log[-pp - I eta] -> Log[pp] - I Pi // Normal\frac{1}{\text{ep}^2 \;\text{pp}^2}+\frac{2 \log (\mu )-\log (\text{pp})+i \pi }{\text{ep} \;\text{pp}^2}+\frac{4 \log ^2(\mu )-4 \log (\mu ) (\log (\text{pp})-i \pi )+(\log (\text{pp})-i \pi )^2}{2 \;\text{pp}^2}
(res - resLit) /. pp | ScaleMu -> 10
Notice that one can also keep the i
\eta-prescription explicit in the integrand by setting the option
EtaSign to True. However, for integrating such
representation using Mathematica’s Integrate it is better
to remove it
tmp = FCFeynmanParametrize[int, {q}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FeynmanIntegralPrefactor -> "LoopTools", EtaSign -> True]\left\{(x(1)+x(2)+x(3))^{2 \;\text{ep}-1} (-x(2) x(3)-i \eta )^{-\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}
tmp /. SMP["Eta"] -> 0\left\{(-x(2) x(3))^{-\text{ep}-1} (x(1)+x(2)+x(3))^{2 \;\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}
int = SFAD[{{k, -m^2/Q k . n - k . nb Q}, {-m^2, 1}}, {{k, -m^2/Q k . nb - k . n Q}, {-m^2, 1}}, {k, m^2}]\frac{1}{(k^2+-\frac{(k\cdot n) m^2}{Q}-Q (k\cdot \;\text{nb})+m^2+i \eta ).(k^2+-\frac{(k\cdot \;\text{nb}) m^2}{Q}-Q (k\cdot n)+m^2+i \eta ).(k^2-m^2+i \eta )}
Sometimes loop integrals may require additional regulators beyond
dimensional regularization (e.g. in SCET). For such cases we may add
extra propagators acting as regulators via the option
ExtraPropagators
FCFeynmanParametrize[int, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[nb] -> 0, SPD[n] -> 0, SPD[nb, n] -> 2, Q -> 1},
ExtraPropagators -> {SFAD[{{0, n . k}, {0, +1}, al}]}]\left\{x(4)^{\text{al}-1} (x(1)+x(2)+x(3))^{\text{al}+2 \;\text{ep}-1} \left(m^4 x(2) x(3)+m^2 x(1)^2-2 m^2 x(2) x(3)-m^2 x(2) x(4)+x(2) x(3)-x(3) x(4)\right)^{-\text{al}-\text{ep}-1},\frac{(-1)^{\text{al}+3} \Gamma (\text{al}+\text{ep}+1)}{\Gamma (\text{al})},\{x(1),x(2),x(3),x(4)\}\right\}
The option FCReplaceMomenta is useful when we want to
replace external momenta by linear combinations of other momenta. If the
coefficients are symbolic, please keep in mind that you need to declare
them as being of type FCVariable.
DataType[m, FCVariable] = True;
DataType[Q, FCVariable] = True;FCFeynmanParametrize[SFAD[k - pb, k + p, {k, m^2}], {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[nb] -> 0, SPD[n] -> 0, SPD[nb, n] -> 2, Q -> 1},
ExtraPropagators -> {SFAD[{{0, n . k}, {0, +1}, al}]}, FCReplaceMomenta -> {p -> (Q n/2 + m^2/Q nb/2), pb -> (Q nb/2 + m^2/Q n/2)}]\left\{x(4)^{\text{al}-1} (x(1)+x(2)+x(3))^{\text{al}+2 \;\text{ep}-1} \left(m^4 (-x(2)) x(3)+m^2 x(1)^2-2 m^2 x(2) x(3)+m^2 x(2) x(4)-x(2) x(3)-x(3) x(4)\right)^{-\text{al}-\text{ep}-1},\frac{(-1)^{\text{al}+3} \Gamma (\text{al}+\text{ep}+1)}{\Gamma (\text{al})},\{x(1),x(2),x(3),x(4)\}\right\}
1-loop tadpole
FCFeynmanParametrize[FAD[{q, m}], {q}, Names -> x, Method -> "Lee-Pomeransky"]\left\{\left(m^2 x(1)^2+x(1)\right)^{-D/2},-\frac{\Gamma \left(\frac{D}{2}\right)}{\Gamma (D-1)},\{x(1)\}\right\}
Massless 1-loop 2-point function
FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, Method -> "Lee-Pomeransky"]\left\{\left(-p^2 x(2) x(1)+x(1)+x(2)\right)^{-D/2},\frac{\Gamma \left(\frac{D}{2}\right)}{\Gamma (D-2)},\{x(1),x(2)\}\right\}
2-loop self-energy with 3 massive lines and two eikonal propagators
FCFeynmanParametrize[{SFAD[{ p1, m^2}], SFAD[{ p3, m^2}],
SFAD[{(p3 - p1), m^2}], SFAD[{{0, 2 p1 . n}}], SFAD[{{0, 2 p3 . n}}]}, {p1, p3},
Names -> x, Method -> "Lee-Pomeransky", FCReplaceD -> {D -> 4 - 2 ep},
FinalSubstitutions -> {SPD[n] -> 1, m -> 1}]\left\{\left(x(2) x(1)^2+x(3) x(1)^2+x(2)^2 x(1)+x(3)^2 x(1)+x(5)^2 x(1)+x(2) x(1)+3 x(2) x(3) x(1)+x(3) x(1)+x(2) x(3)^2+x(2) x(4)^2+x(3) x(4)^2+x(3) x(5)^2+x(2)^2 x(3)+x(2) x(3)+2 x(3) x(4) x(5)\right)^{\text{ep}-2},-\frac{\Gamma (2-\text{ep})}{\Gamma (1-3 \;\text{ep})},\{x(1),x(2),x(3),x(4),x(5)\}\right\}