FeynCalc manual (development version)

 

FCFeynmanParametrize

FCFeynmanParametrize[int, {q1, q2, ...}] introduces Feynman parameters for the multi-loop integral int.

The function returns {fpInt,pref,vars}, where fpInt is the integrand in Feynman parameters, pref is the prefactor free of Feynman parameters and vars is the list of integration variables.

If the chosen parametrization contains a Dirac delta multiplying the integrand, it will be omitted unless the option DiracDelta is set to True.

By default FCFeynmanParametrize uses normalization that is common in multi-loop calculations, i.e. \frac{1}{i \pi^{D/2}} or \frac{1}{\pi^{D/2}} per loop for Minkowski or Euclidean/Cartesian integrals respectively.

If you want to have the standard \frac{1}{(2 \pi)^D} normalization or yet another value, please set the option FeynmanIntegralPrefactor accordingly. Following values are available

The calculation of D-dimensional Minkowski integrals and D-1-dimensional Cartesian integrals is straightforward.

To calculate a D-dimensional Euclidean integral (i.e. an integral defined with the Euclidean metric signature (1,1,1,1) you need to write it in terms of FVD, SPD, FAD, SFAD etc. and set the option "Euclidean" to True.

The function can derive different representations of a loop integral. The choice of the representation is controlled by the option Method. Following representations are available

FCFeynmanParametrize can also be employed in conjunction with FCFeynmanParameterJoin, where one first joins suitable propagators using auxiliary Feynman parameters and then finally integrates out loop momenta.

For a proper analysis of a loop integral one usually needs the U and F polynomials separately. Since internally FCFeynmanParametrize uses FCFeynmanPrepare, the information available from the latter is also accessible to FCFeynmanParametrize.

By setting the option FCFeynmanPrepare to True, the output of FCFeynmanPrepare will be added the the output of FCFeynmanParametrize as the 4th list element.

See also

Overview, FCFeynmanPrepare, FCFeynmanProjectivize, FCFeynmanParameterJoin, SplitSymbolicPowers.

Examples

Feynman representation

1-loop tadpole

FCFeynmanParametrize[FAD[{q, m}], {q}, Names -> x]

\left\{1,-\left(m^2\right)^{\frac{D}{2}-1} \Gamma \left(1-\frac{D}{2}\right),\{\}\right\}

FCFeynmanParametrize[FAD[{q, m}], {q}, Names -> x, EtaSign -> True]

\left\{1,-\Gamma \left(1-\frac{D}{2}\right) \left(m^2-i \eta \right)^{\frac{D}{2}-1},\{\}\right\}

Massless 1-loop 2-point function

FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x]

\left\{(x(1)+x(2))^{2-D} \left(-p^2 x(1) x(2)\right)^{\frac{D}{2}-2},\Gamma \left(2-\frac{D}{2}\right),\{x(1),x(2)\}\right\}

FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, EtaSign -> True]

\left\{(x(1)+x(2))^{2-D} \left(-p^2 x(1) x(2)-i \eta \right)^{\frac{D}{2}-2},\Gamma \left(2-\frac{D}{2}\right),\{x(1),x(2)\}\right\}

With p^2 replaced by pp and D set to 4 - 2 Epsilon

FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp, 
  FCReplaceD -> {D -> 4 - 2 Epsilon}]

\left\{(x(1)+x(2))^{2 \varepsilon -2} (-\text{pp} x(1) x(2))^{-\varepsilon },\Gamma (\varepsilon ),\{x(1),x(2)\}\right\}

Standard text-book prefactor of the loop integral measure

FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp, 
  FCReplaceD -> {D -> 4 - 2 Epsilon}, FeynmanIntegralPrefactor -> "Textbook"]

\left\{(x(1)+x(2))^{2 \varepsilon -2} (-\text{pp} x(1) x(2))^{-\varepsilon },i 2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}

Same integral but with the Euclidean metric signature

FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp, 
  FCReplaceD -> {D -> 4 - 2 Epsilon}, FeynmanIntegralPrefactor -> "Textbook", "Euclidean" -> True]

\left\{(x(1)+x(2))^{2 \varepsilon -2} (\text{pp} x(1) x(2))^{-\varepsilon },2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}

A tensor integral

FCFeynmanParametrize[FAD[{q, m}] FAD[{q - p, m2}] FVD[q, mu] FVD[q, nu], {q}, 
  Names -> x, FCE -> True]

\left\{(x(1)+x(2))^{-D} \left(m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2)\right)^{\frac{D}{2}-2} \left(x(2)^2 \Gamma \left(2-\frac{D}{2}\right) p^{\text{mu}} p^{\text{nu}}-\frac{1}{2} \Gamma \left(1-\frac{D}{2}\right) g^{\text{mu}\;\text{nu}} \left(m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2)\right)\right),1,\{x(1),x(2)\}\right\}

1-loop master formulas for Minkowski integrals (cf. Eq. 9.49b in Sterman’s An introduction to QFT)

SFAD[{{k, 2 p . k}, M^2, s}] 
 
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1, 
  FCReplaceD -> {D -> n}]

(k^2+2 (k\cdot p)-M^2+i \eta )^{-s}

\left\{1,\frac{i \pi ^{n/2} (-1)^s \Gamma \left(s-\frac{n}{2}\right) \left(M^2+p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}

FVD[k, \[Mu]] SFAD[{{k, 2 p . k}, M^2, s}] 
 
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1, 
  FCReplaceD -> {D -> n}]

k^{\mu } (k^2+2 (k\cdot p)-M^2+i \eta )^{-s}

\left\{1,-\frac{i \pi ^{n/2} (-1)^s p^{\mu } \Gamma \left(s-\frac{n}{2}\right) \left(M^2+p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}

FVD[k, \[Mu]] FVD[k, \[Nu]] SFAD[{{k, 2 p . k}, M^2, s}] 
 
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1, 
  FCReplaceD -> {D -> n}]

k^{\mu } k^{\nu } (k^2+2 (k\cdot p)-M^2+i \eta )^{-s}

\left\{1,\frac{i \pi ^{n/2} (-1)^s \left(M^2+p^2\right)^{\frac{n}{2}-s} \left(p^{\mu } p^{\nu } \Gamma \left(s-\frac{n}{2}\right)-\frac{1}{2} \left(M^2+p^2\right) g^{\mu \nu } \Gamma \left(-\frac{n}{2}+s-1\right)\right)}{\Gamma (s)},\{\}\right\}

1-loop master formulas for Euclidean integrals (cf. Eq. 9.49a in Sterman’s An introduction to QFT)

SFAD[{{k, 2 p . k}, -M^2, s}] 
 
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, "Euclidean" -> True, 
  FeynmanIntegralPrefactor -> I]

(k^2+2 (k\cdot p)+M^2+i \eta )^{-s}

\left\{1,\frac{i \pi ^{D/2} \Gamma \left(s-\frac{D}{2}\right) \left(M^2-p^2\right)^{\frac{D}{2}-s}}{\Gamma (s)},\{\}\right\}

FVD[k, \[Mu]] SFAD[{{k, 2 p . k}, -M^2, s}] 
 
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> I, 
  FCReplaceD -> {D -> n}, "Euclidean" -> True]

k^{\mu } (k^2+2 (k\cdot p)+M^2+i \eta )^{-s}

\left\{1,-\frac{i \pi ^{n/2} p^{\mu } \Gamma \left(s-\frac{n}{2}\right) \left(M^2-p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}

FVD[k, \[Mu]] FVD[k, \[Nu]] SFAD[{{k, 2 p . k}, -M^2, s}] 
 
FCFeynmanParametrize[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> I, 
  FCReplaceD -> {D -> n}, "Euclidean" -> True]

k^{\mu } k^{\nu } (k^2+2 (k\cdot p)+M^2+i \eta )^{-s}

\left\{1,\frac{i \pi ^{n/2} \left(M^2-p^2\right)^{\frac{n}{2}-s} \left(\frac{1}{2} \left(M^2-p^2\right) g^{\mu \nu } \Gamma \left(-\frac{n}{2}+s-1\right)+p^{\mu } p^{\nu } \Gamma \left(s-\frac{n}{2}\right)\right)}{\Gamma (s)},\{\}\right\}

1-loop massless box

FAD[p, p + q1, p + q1 + q2, p + q1 + q2 + q3] 
 
FCFeynmanParametrize[%, {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]

\frac{1}{p^2.(p+\text{q1})^2.(p+\text{q1}+\text{q2})^2.(p+\text{q1}+\text{q2}+\text{q3})^2}

\left\{(x(1)+x(2)+x(3)+x(4))^{2 \varepsilon } \left(-2 x(1) x(3) (\text{q1}\cdot \;\text{q2})-2 x(1) x(4) (\text{q1}\cdot \;\text{q2})-2 x(1) x(4) (\text{q1}\cdot \;\text{q3})-\text{q1}^2 x(1) x(2)-\text{q1}^2 x(1) x(3)-\text{q1}^2 x(1) x(4)-2 x(4) x(2) (\text{q2}\cdot \;\text{q3})-2 x(1) x(4) (\text{q2}\cdot \;\text{q3})-\text{q2}^2 x(3) x(2)-\text{q2}^2 x(4) x(2)-\text{q2}^2 x(1) x(3)-\text{q2}^2 x(1) x(4)-\text{q3}^2 x(4) x(2)-\text{q3}^2 x(1) x(4)-\text{q3}^2 x(3) x(4)\right)^{-\varepsilon -2},\Gamma (\varepsilon +2),\{x(1),x(2),x(3),x(4)\}\right\}

3-loop self-energy with two massive lines

SFAD[{{p1, 0}, {m^2, 1}, 1}, {{p2, 0}, {0, 1}, 1}, {{p3, 0}, {0, 1}, 1}, 
   {{p2 + p3, 0}, {0, 1}, 1}, {{p1 - Q, 0}, {m^2, 1}, 1}, {{p2 - Q, 0}, {0, 1}, 1}, 
   {{p2 + p3 - Q, 0}, {0, 1}, 1}, {{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}] 
 
FCFeynmanParametrize[%, {p1, p2, p3}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]

\frac{1}{(\text{p1}^2-m^2+i \eta ).(\text{p2}^2+i \eta ).(\text{p3}^2+i \eta ).((\text{p2}+\text{p3})^2+i \eta ).((\text{p1}-Q)^2-m^2+i \eta ).((\text{p2}-Q)^2+i \eta ).((\text{p2}+\text{p3}-Q)^2+i \eta ).((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}

\left\{(x(1) x(2) x(3)+x(1) x(4) x(3)+x(2) x(5) x(3)+x(4) x(5) x(3)+x(1) x(6) x(3)+x(5) x(6) x(3)+x(1) x(7) x(3)+x(5) x(7) x(3)+x(1) x(8) x(3)+x(2) x(8) x(3)+x(4) x(8) x(3)+x(5) x(8) x(3)+x(6) x(8) x(3)+x(7) x(8) x(3)+x(1) x(2) x(4)+x(2) x(4) x(5)+x(1) x(4) x(6)+x(4) x(5) x(6)+x(1) x(2) x(7)+x(2) x(5) x(7)+x(1) x(6) x(7)+x(5) x(6) x(7)+x(1) x(2) x(8)+x(2) x(4) x(8)+x(2) x(5) x(8)+x(1) x(6) x(8)+x(4) x(6) x(8)+x(5) x(6) x(8)+x(2) x(7) x(8)+x(6) x(7) x(8))^{4 \varepsilon } \left(x(2) x(3) x(5)^2 m^2+x(2) x(4) x(5)^2 m^2+x(3) x(4) x(5)^2 m^2+x(1)^2 x(2) x(3) m^2+x(1)^2 x(2) x(4) m^2+x(1)^2 x(3) x(4) m^2+2 x(1) x(2) x(3) x(5) m^2+2 x(1) x(2) x(4) x(5) m^2+2 x(1) x(3) x(4) x(5) m^2+x(3) x(5)^2 x(6) m^2+x(4) x(5)^2 x(6) m^2+x(1)^2 x(3) x(6) m^2+x(1)^2 x(4) x(6) m^2+2 x(1) x(3) x(5) x(6) m^2+2 x(1) x(4) x(5) x(6) m^2+x(2) x(5)^2 x(7) m^2+x(3) x(5)^2 x(7) m^2+x(1)^2 x(2) x(7) m^2+x(1)^2 x(3) x(7) m^2+2 x(1) x(2) x(5) x(7) m^2+2 x(1) x(3) x(5) x(7) m^2+x(1)^2 x(6) x(7) m^2+x(5)^2 x(6) x(7) m^2+2 x(1) x(5) x(6) x(7) m^2+x(2) x(5)^2 x(8) m^2+x(3) x(5)^2 x(8) m^2+x(1)^2 x(2) x(8) m^2+x(1)^2 x(3) x(8) m^2+x(1) x(2) x(3) x(8) m^2+x(1) x(2) x(4) x(8) m^2+x(1) x(3) x(4) x(8) m^2+2 x(1) x(2) x(5) x(8) m^2+2 x(1) x(3) x(5) x(8) m^2+x(2) x(3) x(5) x(8) m^2+x(2) x(4) x(5) x(8) m^2+x(3) x(4) x(5) x(8) m^2+x(1)^2 x(6) x(8) m^2+x(5)^2 x(6) x(8) m^2+x(1) x(3) x(6) x(8) m^2+x(1) x(4) x(6) x(8) m^2+2 x(1) x(5) x(6) x(8) m^2+x(3) x(5) x(6) x(8) m^2+x(4) x(5) x(6) x(8) m^2+x(1) x(2) x(7) x(8) m^2+x(1) x(3) x(7) x(8) m^2+x(2) x(5) x(7) x(8) m^2+x(3) x(5) x(7) x(8) m^2+x(1) x(6) x(7) x(8) m^2+x(5) x(6) x(7) x(8) m^2-Q^2 x(1) x(2) x(3) x(5)-Q^2 x(1) x(2) x(4) x(5)-Q^2 x(1) x(3) x(4) x(5)-Q^2 x(1) x(2) x(3) x(6)-Q^2 x(1) x(2) x(4) x(6)-Q^2 x(1) x(3) x(4) x(6)-Q^2 x(1) x(3) x(5) x(6)-Q^2 x(2) x(3) x(5) x(6)-Q^2 x(1) x(4) x(5) x(6)-Q^2 x(2) x(4) x(5) x(6)-Q^2 x(3) x(4) x(5) x(6)-Q^2 x(1) x(2) x(3) x(7)-Q^2 x(1) x(2) x(4) x(7)-Q^2 x(1) x(3) x(4) x(7)-Q^2 x(1) x(2) x(5) x(7)-Q^2 x(1) x(3) x(5) x(7)-Q^2 x(2) x(3) x(5) x(7)-Q^2 x(2) x(4) x(5) x(7)-Q^2 x(3) x(4) x(5) x(7)-Q^2 x(1) x(2) x(6) x(7)-Q^2 x(1) x(4) x(6) x(7)-Q^2 x(1) x(5) x(6) x(7)-Q^2 x(2) x(5) x(6) x(7)-Q^2 x(4) x(5) x(6) x(7)-Q^2 x(1) x(2) x(3) x(8)-Q^2 x(1) x(2) x(4) x(8)-Q^2 x(1) x(3) x(4) x(8)-Q^2 x(1) x(2) x(5) x(8)-Q^2 x(1) x(3) x(5) x(8)-Q^2 x(1) x(2) x(6) x(8)-Q^2 x(2) x(3) x(6) x(8)-Q^2 x(1) x(4) x(6) x(8)-Q^2 x(2) x(4) x(6) x(8)-Q^2 x(3) x(4) x(6) x(8)-Q^2 x(1) x(5) x(6) x(8)-Q^2 x(2) x(5) x(6) x(8)-Q^2 x(3) x(5) x(6) x(8)-Q^2 x(2) x(3) x(7) x(8)-Q^2 x(2) x(4) x(7) x(8)-Q^2 x(3) x(4) x(7) x(8)-Q^2 x(2) x(5) x(7) x(8)-Q^2 x(3) x(5) x(7) x(8)-Q^2 x(2) x(6) x(7) x(8)-Q^2 x(4) x(6) x(7) x(8)-Q^2 x(5) x(6) x(7) x(8)\right)^{-3 \varepsilon -2},\Gamma (3 \varepsilon +2),\{x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8)\}\right\}

An example of using FCFeynmanParametrize together with FCFeynmanParameterJoin

props = {SFAD[{p1, m^2}], SFAD[{p3, m^2}], SFAD[{{0, 2 p1 . n}}], 
   SFAD[{{0, 2 (p1 + p3) . n}}]}

\left\{\frac{1}{(\text{p1}^2-m^2+i \eta )},\frac{1}{(\text{p3}^2-m^2+i \eta )},\frac{1}{(2 (n\cdot \;\text{p1})+i \eta )},\frac{1}{(2 (n\cdot (\text{p1}+\text{p3}))+i \eta )}\right\}

intT = FCFeynmanParameterJoin[{{props[[1]] props[[2]], 1, x}, 
    props[[3]] props[[4]], y}, {p1, p3}]

\left\{\frac{1}{(\left(-x(1) m^2-x(2) m^2+\text{p1}^2 x(1)+\text{p3}^2 x(2)\right) y(1)+2 (n\cdot \;\text{p1}) y(2)+(2 (n\cdot \;\text{p1})+2 (n\cdot \;\text{p3})) y(3)+i \eta )^4},6 y(1),\{x(1),x(2),y(1),y(2),y(3)\}\right\}

Here the Feynman parameter variables x_i and y_i are independent from each other, i.e. we have \delta(1-x_1-x_2-x_3) \times \delta(1-y_1-y_2-y_3). This gives us much more freedom when exploiting the Cheng-Wu theorem.

FCFeynmanParametrize[intT[[1]], intT[[2]], {p1, p3}, Indexed -> True, 
  FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[n] -> 1, m -> 1}, Variables -> intT[[3]]]

\left\{y(1) \left(x(1) x(2) y(1)^2\right)^{3 \;\text{ep}-2} \left(y(1) \left(x(1) x(2)^2 y(1)^2+x(1)^2 x(2) y(1)^2+x(2) y(2)^2+x(1) y(3)^2+x(2) y(3)^2+2 x(2) y(2) y(3)\right)\right)^{-2 \;\text{ep}},\Gamma (2 \;\text{ep}),\{x(1),x(2),y(1),y(2),y(3)\}\right\}

In the case that we need U and F polynomials in addition to the normal output (e.g. for HyperInt)

(SFAD[{{0, 2*k1 . n}}]*SFAD[{{0, 2*k2 . n}}]*SFAD[{k1, m^2}]*
    SFAD[{k2, m^2}]*SFAD[{k1 - k2, m^2}]) 
 
out = FCFeynmanParametrize[%, {k1, k2}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}, 
   FCFeynmanPrepare -> True]

\frac{1}{(\text{k1}^2-m^2+i \eta ) (\text{k2}^2-m^2+i \eta ) ((\text{k1}-\text{k2})^2-m^2+i \eta ) (2 (\text{k1}\cdot n)+i \eta ) (2 (\text{k2}\cdot n)+i \eta )}

\left\{(x(3) x(4)+x(5) x(4)+x(3) x(5))^{3 \varepsilon -1} \left(m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right)^{-2 \varepsilon -1},-\Gamma (2 \varepsilon +1),\{x(1),x(2),x(3),x(4),x(5)\},\left\{x(3) x(4)+x(5) x(4)+x(3) x(5),m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5),\left( \begin{array}{ccc} x(1) & \frac{1}{(2 (\text{k1}\cdot n)+i \eta )} & 1 \\ x(2) & \frac{1}{(2 (\text{k2}\cdot n)+i \eta )} & 1 \\ x(3) & \frac{1}{(\text{k1}^2-m^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{k1}-\text{k2})^2-m^2+i \eta )} & 1 \\ x(5) & \frac{1}{(\text{k2}^2-m^2+i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(3)+x(4) & -x(4) \\ -x(4) & x(4)+x(5) \\ \end{array} \right),\left\{x(1) \left(-n^{\text{FCGV}(\text{mu})}\right),x(2) \left(-n^{\text{FCGV}(\text{mu})}\right)\right\},-m^2 (x(3)+x(4)+x(5)),1,0\right\}\right\}

From this output we can easily extract the integrand, its x_i-independent prefactor and the two Symanzik polynomials

{integrand, pref} = out[[1 ;; 2]] 
 
{uPoly, fPoly} = out[[4]][[1 ;; 2]]

\left\{(x(3) x(4)+x(5) x(4)+x(3) x(5))^{3 \varepsilon -1} \left(m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right)^{-2 \varepsilon -1},-\Gamma (2 \varepsilon +1)\right\}

\left\{x(3) x(4)+x(5) x(4)+x(3) x(5),m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right\}

Symbolic propagator powers are fully supported

SFAD[{I k, 0, -1/2 + ep}, {I (k + p), 0, 1}, EtaSign -> -1] 
 
v1 = FCFeynmanParametrize[%, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, 
   FinalSubstitutions -> {SPD[p] -> 1}]

\frac{1}{(-k^2-i \eta )^{\text{ep}-\frac{1}{2}}.(-(k+p)^2-i \eta )}

\left\{(-x(1)-x(2))^{3 \;\text{ep}-\frac{7}{2}} x(2)^{\text{ep}-\frac{3}{2}} (-x(1) x(2))^{\frac{3}{2}-2 \;\text{ep}},\frac{(-1)^{\text{ep}+\frac{1}{2}} \Gamma \left(2 \;\text{ep}-\frac{3}{2}\right)}{\Gamma \left(\text{ep}-\frac{1}{2}\right)},\{x(1),x(2)\}\right\}

An alternative representation for symbolic powers can be obtained using the option SplitSymbolicPowers

SFAD[{I k, 0, -1/2 + ep}, {I (k + p), 0, 1}, EtaSign -> -1] 
 
v2 = FCFeynmanParametrize[%, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, 
   FinalSubstitutions -> {SPD[p] -> 1}, SplitSymbolicPowers -> True]

\frac{1}{(-k^2-i \eta )^{\text{ep}-\frac{1}{2}}.(-(k+p)^2-i \eta )}

\left\{x(2)^{\text{ep}-\frac{1}{2}} \left(\left(\frac{1}{2} (1-2 \;\text{ep})+\frac{1}{2} (4-2 \;\text{ep})-1\right) x(1) (-x(1)-x(2))^{3 \;\text{ep}-\frac{7}{2}} (-x(1) x(2))^{\frac{1}{2}-2 \;\text{ep}}+\left(2 \;\text{ep}+\frac{1}{2} (2 \;\text{ep}-1)-3\right) (-x(1)-x(2))^{3 \;\text{ep}-\frac{9}{2}} (-x(1) x(2))^{\frac{3}{2}-2 \;\text{ep}}\right),\frac{(-1)^{\text{ep}+\frac{1}{2}} \Gamma \left(2 \;\text{ep}-\frac{3}{2}\right)}{\Gamma \left(\text{ep}+\frac{1}{2}\right)},\{x(1),x(2)\}\right\}

Even though the parametric integrals evaluate to different values, the product of the integral and its prefactor remains the same

Integrate[Normal[Series[v1[[1]] /. x[1] -> 1, {ep, 0, 0}]] /. x[1] -> 1, {x[2], 0, Infinity}] 
 
Normal@Series[v1[[2]] %, {ep, 0, 0}]

\frac{2}{5}

-\frac{4 i}{15}

Integrate[Normal[Series[v2[[1]] /. x[1] -> 1, {ep, 0, 0}]] /. x[1] -> 1, {x[2], 0, Infinity}] 
 
Normal@Series[v2[[2]] %, {ep, 0, 0}]

-\frac{1}{5}

-\frac{4 i}{15}

Calculate the simplest divergent triangle integral from QCDLoop

FCClearScalarProducts[];
SPD[r] = 0;
SPD[s] = 0;
SPD[r, s] = -1/2;
int = FAD[{q, 0}, {q - r, 0}, {q - s, 0}]

\frac{1}{q^2.(q-r)^2.(q-s)^2}

ToPaVe[int, q]

i \pi ^2 \;\text{C}_0(0,0,1,0,0,0)

fp = FCFeynmanParametrize[int, {q}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FeynmanIntegralPrefactor -> "LoopTools"]

\left\{(-x(2) x(3))^{-\text{ep}-1} (x(1)+x(2)+x(3))^{2 \;\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}

intRaw = Integrate[fp[[1]] /. x[2] -> 1, {x[1], 0, Infinity}, Assumptions -> {ep < 0, x[3] >= 0}]

-\frac{(-x(3))^{-\text{ep}-1} (x(3)+1)^{2 \;\text{ep}}}{2 \;\text{ep}}

Reintroduce the correct i \eta-prescription to get the imaginary part right

intRes = Integrate[intRaw, {x[3], 0, Infinity}, Assumptions -> {ep < 0}] /. (-1)^(-ep) -> (-1 - I eta)^(-ep)

\frac{(-1-i \;\text{eta})^{-\text{ep}} \Gamma (-\text{ep})^2}{2 \;\text{ep} \Gamma (-2 \;\text{ep})}

res = (Series[fp[[2]] intRes, {ep, 0, 0}] // Normal) /. Log[-1 - I eta] -> Log[1] - I Pi

\frac{1}{\text{ep}^2}+\frac{i \pi }{\text{ep}}-\frac{\pi ^2}{2}

Compare to the known result

resLit = Series[ScaleMu^(2 ep)/ep^2 1/pp^2 (-pp - I eta)^(-ep), {ep, 0, 0}] /. Log[-pp - I eta] -> Log[pp] - I Pi // Normal

\frac{1}{\text{ep}^2 \;\text{pp}^2}+\frac{2 \log (\mu )-\log (\text{pp})+i \pi }{\text{ep} \;\text{pp}^2}+\frac{4 \log ^2(\mu )-4 \log (\mu ) (\log (\text{pp})-i \pi )+(\log (\text{pp})-i \pi )^2}{2 \;\text{pp}^2}

(res - resLit) /. pp | ScaleMu -> 1

0

Notice that one can also keep the i \eta-prescription explicit in the integrand by setting the option EtaSign to True. However, for integrating such representation using Mathematica’s Integrate it is better to remove it

tmp = FCFeynmanParametrize[int, {q}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FeynmanIntegralPrefactor -> "LoopTools", EtaSign -> True]

\left\{(x(1)+x(2)+x(3))^{2 \;\text{ep}-1} (-x(2) x(3)-i \eta )^{-\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}

tmp /. SMP["Eta"] -> 0

\left\{(-x(2) x(3))^{-\text{ep}-1} (x(1)+x(2)+x(3))^{2 \;\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}

int = SFAD[{{k, -m^2/Q k . n - k . nb Q}, {-m^2, 1}}, {{k, -m^2/Q k . nb - k . n Q}, {-m^2, 1}}, {k, m^2}]

\frac{1}{(k^2+-\frac{(k\cdot n) m^2}{Q}-Q (k\cdot \;\text{nb})+m^2+i \eta ).(k^2+-\frac{(k\cdot \;\text{nb}) m^2}{Q}-Q (k\cdot n)+m^2+i \eta ).(k^2-m^2+i \eta )}

Sometimes loop integrals may require additional regulators beyond dimensional regularization (e.g. in SCET). For such cases we may add extra propagators acting as regulators via the option ExtraPropagators

FCFeynmanParametrize[int, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[nb] -> 0, SPD[n] -> 0, SPD[nb, n] -> 2, Q -> 1}, 
  ExtraPropagators -> {SFAD[{{0, n . k}, {0, +1}, al}]}]

\left\{x(4)^{\text{al}-1} (x(1)+x(2)+x(3))^{\text{al}+2 \;\text{ep}-1} \left(m^4 x(2) x(3)+m^2 x(1)^2-2 m^2 x(2) x(3)-m^2 x(2) x(4)+x(2) x(3)-x(3) x(4)\right)^{-\text{al}-\text{ep}-1},\frac{(-1)^{\text{al}+3} \Gamma (\text{al}+\text{ep}+1)}{\Gamma (\text{al})},\{x(1),x(2),x(3),x(4)\}\right\}

The option FCReplaceMomenta is useful when we want to replace external momenta by linear combinations of other momenta. If the coefficients are symbolic, please keep in mind that you need to declare them as being of type FCVariable.

DataType[m, FCVariable] = True;
DataType[Q, FCVariable] = True;
FCFeynmanParametrize[SFAD[k - pb, k + p, {k, m^2}], {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[nb] -> 0, SPD[n] -> 0, SPD[nb, n] -> 2, Q -> 1}, 
  ExtraPropagators -> {SFAD[{{0, n . k}, {0, +1}, al}]}, FCReplaceMomenta -> {p -> (Q n/2 + m^2/Q nb/2), pb -> (Q nb/2 + m^2/Q n/2)}]

\left\{x(4)^{\text{al}-1} (x(1)+x(2)+x(3))^{\text{al}+2 \;\text{ep}-1} \left(m^4 (-x(2)) x(3)+m^2 x(1)^2-2 m^2 x(2) x(3)+m^2 x(2) x(4)-x(2) x(3)-x(3) x(4)\right)^{-\text{al}-\text{ep}-1},\frac{(-1)^{\text{al}+3} \Gamma (\text{al}+\text{ep}+1)}{\Gamma (\text{al})},\{x(1),x(2),x(3),x(4)\}\right\}

Lee-Pomeransky representation

1-loop tadpole

FCFeynmanParametrize[FAD[{q, m}], {q}, Names -> x, Method -> "Lee-Pomeransky"]

\left\{\left(m^2 x(1)^2+x(1)\right)^{-D/2},-\frac{\Gamma \left(\frac{D}{2}\right)}{\Gamma (D-1)},\{x(1)\}\right\}

Massless 1-loop 2-point function

FCFeynmanParametrize[FAD[q, q - p], {q}, Names -> x, Method -> "Lee-Pomeransky"]

\left\{\left(-p^2 x(2) x(1)+x(1)+x(2)\right)^{-D/2},\frac{\Gamma \left(\frac{D}{2}\right)}{\Gamma (D-2)},\{x(1),x(2)\}\right\}

2-loop self-energy with 3 massive lines and two eikonal propagators

FCFeynmanParametrize[{SFAD[{ p1, m^2}], SFAD[{ p3, m^2}], 
   SFAD[{(p3 - p1), m^2}], SFAD[{{0, 2 p1 . n}}], SFAD[{{0, 2 p3 . n}}]}, {p1, p3}, 
  Names -> x, Method -> "Lee-Pomeransky", FCReplaceD -> {D -> 4 - 2 ep}, 
  FinalSubstitutions -> {SPD[n] -> 1, m -> 1}]

\left\{\left(x(2) x(1)^2+x(3) x(1)^2+x(2)^2 x(1)+x(3)^2 x(1)+x(5)^2 x(1)+x(2) x(1)+3 x(2) x(3) x(1)+x(3) x(1)+x(2) x(3)^2+x(2) x(4)^2+x(3) x(4)^2+x(3) x(5)^2+x(2)^2 x(3)+x(2) x(3)+2 x(3) x(4) x(5)\right)^{\text{ep}-2},-\frac{\Gamma (2-\text{ep})}{\Gamma (1-3 \;\text{ep})},\{x(1),x(2),x(3),x(4),x(5)\}\right\}