FCFeynmanParametrize[int, {q1, q2, ...}]
introduces Feynman parameters for the multi-loop integral int.
The function returns {fpInt,pref,vars}
, where fpInt
is the integrand in Feynman parameters, pref
is the prefactor free of Feynman parameters and vars
is the list of integration variables.
If the chosen parametrization contains a Dirac delta multiplying the integrand, it will be omitted unless the option DiracDelta
is set to True.
By default FCFeynmanParametrize
uses normalization that is common in multi-loop calculations, i.e. \frac{1}{i \pi^{D/2}} or \frac{1}{\pi^{D/2}} per loop for Minkowski or Euclidean/Cartesian integrals respectively.
If you want to have the standard \frac{1}{(2 \pi)^D} normalization or yet another value, please set the option FeynmanIntegralPrefactor
accordingly. Following values are available
The calculation of D-dimensional Minkowski integrals and D-1-dimensional Cartesian integrals is straightforward.
To calculate a D-dimensional Euclidean integral (i.e. an integral defined with the Euclidean metric signature (1,1,1,1) you need to write it in terms of FVD
, SPD
, FAD
, SFAD
etc. and set the option "Euclidean"
to True
.
The function can derive different representations of a loop integral. The choice of the representation is controlled by the option Method
. Following representations are available
FCFeynmanParametrize
can also be employed in conjunction with FCFeynmanParameterJoin
, where one first joins suitable propagators using auxiliary Feynman parameters and then finally integrates out loop momenta.
For a proper analysis of a loop integral one usually needs the U
and F
polynomials separately. Since internally FCFeynmanParametrize
uses FCFeynmanPrepare
, the information available from the latter is also accessible to FCFeynmanParametrize
.
By setting the option FCFeynmanPrepare
to True
, the output of FCFeynmanPrepare
will be added the the output of FCFeynmanParametrize
as the 4th list element.
Overview, FCFeynmanPrepare, FCFeynmanProjectivize, FCFeynmanParameterJoin, SplitSymbolicPowers.
1-loop tadpole
[FAD[{q, m}], {q}, Names -> x] FCFeynmanParametrize
\left\{1,-\left(m^2\right)^{\frac{D}{2}-1} \Gamma \left(1-\frac{D}{2}\right),\{\}\right\}
[FAD[{q, m}], {q}, Names -> x, EtaSign -> True] FCFeynmanParametrize
\left\{1,-\Gamma \left(1-\frac{D}{2}\right) \left(m^2-i \eta \right)^{\frac{D}{2}-1},\{\}\right\}
Massless 1-loop 2-point function
[FAD[q, q - p], {q}, Names -> x] FCFeynmanParametrize
\left\{(x(1)+x(2))^{2-D} \left(-p^2 x(1) x(2)\right)^{\frac{D}{2}-2},\Gamma \left(2-\frac{D}{2}\right),\{x(1),x(2)\}\right\}
[FAD[q, q - p], {q}, Names -> x, EtaSign -> True] FCFeynmanParametrize
\left\{(x(1)+x(2))^{2-D} \left(-p^2 x(1) x(2)-i \eta \right)^{\frac{D}{2}-2},\Gamma \left(2-\frac{D}{2}\right),\{x(1),x(2)\}\right\}
With p^2 replaced by pp
and D
set to 4 - 2 Epsilon
[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp,
FCFeynmanParametrize-> {D -> 4 - 2 Epsilon}] FCReplaceD
\left\{(x(1)+x(2))^{2 \varepsilon -2} (-\text{pp} x(1) x(2))^{-\varepsilon },\Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
Standard text-book prefactor of the loop integral measure
[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp,
FCFeynmanParametrize-> {D -> 4 - 2 Epsilon}, FeynmanIntegralPrefactor -> "Textbook"] FCReplaceD
\left\{(x(1)+x(2))^{2 \varepsilon -2} (-\text{pp} x(1) x(2))^{-\varepsilon },i 2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
Same integral but with the Euclidean metric signature
[FAD[q, q - p], {q}, Names -> x, FinalSubstitutions -> SPD[p] -> pp,
FCFeynmanParametrize-> {D -> 4 - 2 Epsilon}, FeynmanIntegralPrefactor -> "Textbook", "Euclidean" -> True] FCReplaceD
\left\{(x(1)+x(2))^{2 \varepsilon -2} (\text{pp} x(1) x(2))^{-\varepsilon },2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
A tensor integral
[FAD[{q, m}] FAD[{q - p, m2}] FVD[q, mu] FVD[q, nu], {q},
FCFeynmanParametrizeNames -> x, FCE -> True]
\left\{(x(1)+x(2))^{-D} \left(m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2)\right)^{\frac{D}{2}-2} \left(x(2)^2 \Gamma \left(2-\frac{D}{2}\right) p^{\text{mu}} p^{\text{nu}}-\frac{1}{2} \Gamma \left(1-\frac{D}{2}\right) g^{\text{mu}\;\text{nu}} \left(m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2)\right)\right),1,\{x(1),x(2)\}\right\}
1-loop master formulas for Minkowski integrals (cf. Eq. 9.49b in Sterman’s An introduction to QFT)
[{{k, 2 p . k}, M^2, s}]
SFAD
[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1,
FCFeynmanParametrize-> {D -> n}] FCReplaceD
(k^2+2 (k\cdot p)-M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{n/2} (-1)^s \Gamma \left(s-\frac{n}{2}\right) \left(M^2+p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}
[k, \[Mu]] SFAD[{{k, 2 p . k}, M^2, s}]
FVD
[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1,
FCFeynmanParametrize-> {D -> n}] FCReplaceD
k^{\mu } (k^2+2 (k\cdot p)-M^2+i \eta )^{-s}
\left\{1,-\frac{i \pi ^{n/2} (-1)^s p^{\mu } \Gamma \left(s-\frac{n}{2}\right) \left(M^2+p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}
[k, \[Mu]] FVD[k, \[Nu]] SFAD[{{k, 2 p . k}, M^2, s}]
FVD
[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> 1,
FCFeynmanParametrize-> {D -> n}] FCReplaceD
k^{\mu } k^{\nu } (k^2+2 (k\cdot p)-M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{n/2} (-1)^s \left(M^2+p^2\right)^{\frac{n}{2}-s} \left(p^{\mu } p^{\nu } \Gamma \left(s-\frac{n}{2}\right)-\frac{1}{2} \left(M^2+p^2\right) g^{\mu \nu } \Gamma \left(-\frac{n}{2}+s-1\right)\right)}{\Gamma (s)},\{\}\right\}
1-loop master formulas for Euclidean integrals (cf. Eq. 9.49a in Sterman’s An introduction to QFT)
[{{k, 2 p . k}, -M^2, s}]
SFAD
[%, {k}, Names -> x, FCE -> True, "Euclidean" -> True,
FCFeynmanParametrize-> I] FeynmanIntegralPrefactor
(k^2+2 (k\cdot p)+M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{D/2} \Gamma \left(s-\frac{D}{2}\right) \left(M^2-p^2\right)^{\frac{D}{2}-s}}{\Gamma (s)},\{\}\right\}
[k, \[Mu]] SFAD[{{k, 2 p . k}, -M^2, s}]
FVD
[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> I,
FCFeynmanParametrize-> {D -> n}, "Euclidean" -> True] FCReplaceD
k^{\mu } (k^2+2 (k\cdot p)+M^2+i \eta )^{-s}
\left\{1,-\frac{i \pi ^{n/2} p^{\mu } \Gamma \left(s-\frac{n}{2}\right) \left(M^2-p^2\right)^{\frac{n}{2}-s}}{\Gamma (s)},\{\}\right\}
[k, \[Mu]] FVD[k, \[Nu]] SFAD[{{k, 2 p . k}, -M^2, s}]
FVD
[%, {k}, Names -> x, FCE -> True, FeynmanIntegralPrefactor -> I,
FCFeynmanParametrize-> {D -> n}, "Euclidean" -> True] FCReplaceD
k^{\mu } k^{\nu } (k^2+2 (k\cdot p)+M^2+i \eta )^{-s}
\left\{1,\frac{i \pi ^{n/2} \left(M^2-p^2\right)^{\frac{n}{2}-s} \left(\frac{1}{2} \left(M^2-p^2\right) g^{\mu \nu } \Gamma \left(-\frac{n}{2}+s-1\right)+p^{\mu } p^{\nu } \Gamma \left(s-\frac{n}{2}\right)\right)}{\Gamma (s)},\{\}\right\}
1-loop massless box
[p, p + q1, p + q1 + q2, p + q1 + q2 + q3]
FAD
[%, {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}] FCFeynmanParametrize
\frac{1}{p^2.(p+\text{q1})^2.(p+\text{q1}+\text{q2})^2.(p+\text{q1}+\text{q2}+\text{q3})^2}
\left\{(x(1)+x(2)+x(3)+x(4))^{2 \varepsilon } \left(-2 x(1) x(3) (\text{q1}\cdot \;\text{q2})-2 x(1) x(4) (\text{q1}\cdot \;\text{q2})-2 x(1) x(4) (\text{q1}\cdot \;\text{q3})-\text{q1}^2 x(1) x(2)-\text{q1}^2 x(1) x(3)-\text{q1}^2 x(1) x(4)-2 x(4) x(2) (\text{q2}\cdot \;\text{q3})-2 x(1) x(4) (\text{q2}\cdot \;\text{q3})-\text{q2}^2 x(3) x(2)-\text{q2}^2 x(4) x(2)-\text{q2}^2 x(1) x(3)-\text{q2}^2 x(1) x(4)-\text{q3}^2 x(4) x(2)-\text{q3}^2 x(1) x(4)-\text{q3}^2 x(3) x(4)\right)^{-\varepsilon -2},\Gamma (\varepsilon +2),\{x(1),x(2),x(3),x(4)\}\right\}
3-loop self-energy with two massive lines
[{{p1, 0}, {m^2, 1}, 1}, {{p2, 0}, {0, 1}, 1}, {{p3, 0}, {0, 1}, 1},
SFAD{{p2 + p3, 0}, {0, 1}, 1}, {{p1 - Q, 0}, {m^2, 1}, 1}, {{p2 - Q, 0}, {0, 1}, 1},
{{p2 + p3 - Q, 0}, {0, 1}, 1}, {{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]
[%, {p1, p2, p3}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}] FCFeynmanParametrize
\frac{1}{(\text{p1}^2-m^2+i \eta ).(\text{p2}^2+i \eta ).(\text{p3}^2+i \eta ).((\text{p2}+\text{p3})^2+i \eta ).((\text{p1}-Q)^2-m^2+i \eta ).((\text{p2}-Q)^2+i \eta ).((\text{p2}+\text{p3}-Q)^2+i \eta ).((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}
\left\{(x(1) x(2) x(3)+x(1) x(4) x(3)+x(2) x(5) x(3)+x(4) x(5) x(3)+x(1) x(6) x(3)+x(5) x(6) x(3)+x(1) x(7) x(3)+x(5) x(7) x(3)+x(1) x(8) x(3)+x(2) x(8) x(3)+x(4) x(8) x(3)+x(5) x(8) x(3)+x(6) x(8) x(3)+x(7) x(8) x(3)+x(1) x(2) x(4)+x(2) x(4) x(5)+x(1) x(4) x(6)+x(4) x(5) x(6)+x(1) x(2) x(7)+x(2) x(5) x(7)+x(1) x(6) x(7)+x(5) x(6) x(7)+x(1) x(2) x(8)+x(2) x(4) x(8)+x(2) x(5) x(8)+x(1) x(6) x(8)+x(4) x(6) x(8)+x(5) x(6) x(8)+x(2) x(7) x(8)+x(6) x(7) x(8))^{4 \varepsilon } \left(x(2) x(3) x(5)^2 m^2+x(2) x(4) x(5)^2 m^2+x(3) x(4) x(5)^2 m^2+x(1)^2 x(2) x(3) m^2+x(1)^2 x(2) x(4) m^2+x(1)^2 x(3) x(4) m^2+2 x(1) x(2) x(3) x(5) m^2+2 x(1) x(2) x(4) x(5) m^2+2 x(1) x(3) x(4) x(5) m^2+x(3) x(5)^2 x(6) m^2+x(4) x(5)^2 x(6) m^2+x(1)^2 x(3) x(6) m^2+x(1)^2 x(4) x(6) m^2+2 x(1) x(3) x(5) x(6) m^2+2 x(1) x(4) x(5) x(6) m^2+x(2) x(5)^2 x(7) m^2+x(3) x(5)^2 x(7) m^2+x(1)^2 x(2) x(7) m^2+x(1)^2 x(3) x(7) m^2+2 x(1) x(2) x(5) x(7) m^2+2 x(1) x(3) x(5) x(7) m^2+x(1)^2 x(6) x(7) m^2+x(5)^2 x(6) x(7) m^2+2 x(1) x(5) x(6) x(7) m^2+x(2) x(5)^2 x(8) m^2+x(3) x(5)^2 x(8) m^2+x(1)^2 x(2) x(8) m^2+x(1)^2 x(3) x(8) m^2+x(1) x(2) x(3) x(8) m^2+x(1) x(2) x(4) x(8) m^2+x(1) x(3) x(4) x(8) m^2+2 x(1) x(2) x(5) x(8) m^2+2 x(1) x(3) x(5) x(8) m^2+x(2) x(3) x(5) x(8) m^2+x(2) x(4) x(5) x(8) m^2+x(3) x(4) x(5) x(8) m^2+x(1)^2 x(6) x(8) m^2+x(5)^2 x(6) x(8) m^2+x(1) x(3) x(6) x(8) m^2+x(1) x(4) x(6) x(8) m^2+2 x(1) x(5) x(6) x(8) m^2+x(3) x(5) x(6) x(8) m^2+x(4) x(5) x(6) x(8) m^2+x(1) x(2) x(7) x(8) m^2+x(1) x(3) x(7) x(8) m^2+x(2) x(5) x(7) x(8) m^2+x(3) x(5) x(7) x(8) m^2+x(1) x(6) x(7) x(8) m^2+x(5) x(6) x(7) x(8) m^2-Q^2 x(1) x(2) x(3) x(5)-Q^2 x(1) x(2) x(4) x(5)-Q^2 x(1) x(3) x(4) x(5)-Q^2 x(1) x(2) x(3) x(6)-Q^2 x(1) x(2) x(4) x(6)-Q^2 x(1) x(3) x(4) x(6)-Q^2 x(1) x(3) x(5) x(6)-Q^2 x(2) x(3) x(5) x(6)-Q^2 x(1) x(4) x(5) x(6)-Q^2 x(2) x(4) x(5) x(6)-Q^2 x(3) x(4) x(5) x(6)-Q^2 x(1) x(2) x(3) x(7)-Q^2 x(1) x(2) x(4) x(7)-Q^2 x(1) x(3) x(4) x(7)-Q^2 x(1) x(2) x(5) x(7)-Q^2 x(1) x(3) x(5) x(7)-Q^2 x(2) x(3) x(5) x(7)-Q^2 x(2) x(4) x(5) x(7)-Q^2 x(3) x(4) x(5) x(7)-Q^2 x(1) x(2) x(6) x(7)-Q^2 x(1) x(4) x(6) x(7)-Q^2 x(1) x(5) x(6) x(7)-Q^2 x(2) x(5) x(6) x(7)-Q^2 x(4) x(5) x(6) x(7)-Q^2 x(1) x(2) x(3) x(8)-Q^2 x(1) x(2) x(4) x(8)-Q^2 x(1) x(3) x(4) x(8)-Q^2 x(1) x(2) x(5) x(8)-Q^2 x(1) x(3) x(5) x(8)-Q^2 x(1) x(2) x(6) x(8)-Q^2 x(2) x(3) x(6) x(8)-Q^2 x(1) x(4) x(6) x(8)-Q^2 x(2) x(4) x(6) x(8)-Q^2 x(3) x(4) x(6) x(8)-Q^2 x(1) x(5) x(6) x(8)-Q^2 x(2) x(5) x(6) x(8)-Q^2 x(3) x(5) x(6) x(8)-Q^2 x(2) x(3) x(7) x(8)-Q^2 x(2) x(4) x(7) x(8)-Q^2 x(3) x(4) x(7) x(8)-Q^2 x(2) x(5) x(7) x(8)-Q^2 x(3) x(5) x(7) x(8)-Q^2 x(2) x(6) x(7) x(8)-Q^2 x(4) x(6) x(7) x(8)-Q^2 x(5) x(6) x(7) x(8)\right)^{-3 \varepsilon -2},\Gamma (3 \varepsilon +2),\{x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8)\}\right\}
An example of using FCFeynmanParametrize
together with FCFeynmanParameterJoin
= {SFAD[{p1, m^2}], SFAD[{p3, m^2}], SFAD[{{0, 2 p1 . n}}],
props [{{0, 2 (p1 + p3) . n}}]} SFAD
\left\{\frac{1}{(\text{p1}^2-m^2+i \eta )},\frac{1}{(\text{p3}^2-m^2+i \eta )},\frac{1}{(2 (n\cdot \;\text{p1})+i \eta )},\frac{1}{(2 (n\cdot (\text{p1}+\text{p3}))+i \eta )}\right\}
= FCFeynmanParameterJoin[{{props[[1]] props[[2]], 1, x},
intT [[3]] props[[4]], y}, {p1, p3}] props
\left\{\frac{1}{(\left(-x(1) m^2-x(2) m^2+\text{p1}^2 x(1)+\text{p3}^2 x(2)\right) y(1)+2 (n\cdot \;\text{p1}) y(2)+(2 (n\cdot \;\text{p1})+2 (n\cdot \;\text{p3})) y(3)+i \eta )^4},6 y(1),\{x(1),x(2),y(1),y(2),y(3)\}\right\}
Here the Feynman parameter variables x_i and y_i are independent from each other, i.e. we have \delta(1-x_1-x_2-x_3) \times \delta(1-y_1-y_2-y_3). This gives us much more freedom when exploiting the Cheng-Wu theorem.
[intT[[1]], intT[[2]], {p1, p3}, Indexed -> True,
FCFeynmanParametrize-> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[n] -> 1, m -> 1}, Variables -> intT[[3]]] FCReplaceD
\left\{y(1) \left(x(1) x(2) y(1)^2\right)^{3 \;\text{ep}-2} \left(y(1) \left(x(1) x(2)^2 y(1)^2+x(1)^2 x(2) y(1)^2+x(2) y(2)^2+x(1) y(3)^2+x(2) y(3)^2+2 x(2) y(2) y(3)\right)\right)^{-2 \;\text{ep}},\Gamma (2 \;\text{ep}),\{x(1),x(2),y(1),y(2),y(3)\}\right\}
In the case that we need U
and F
polynomials in addition to the normal output (e.g. for HyperInt)
[{{0, 2*k1 . n}}]*SFAD[{{0, 2*k2 . n}}]*SFAD[{k1, m^2}]*
(SFAD[{k2, m^2}]*SFAD[{k1 - k2, m^2}])
SFAD
out = FCFeynmanParametrize[%, {k1, k2}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
-> True] FCFeynmanPrepare
\frac{1}{(\text{k1}^2-m^2+i \eta ) (\text{k2}^2-m^2+i \eta ) ((\text{k1}-\text{k2})^2-m^2+i \eta ) (2 (\text{k1}\cdot n)+i \eta ) (2 (\text{k2}\cdot n)+i \eta )}
\left\{(x(3) x(4)+x(5) x(4)+x(3) x(5))^{3 \varepsilon -1} \left(m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right)^{-2 \varepsilon -1},-\Gamma (2 \varepsilon +1),\{x(1),x(2),x(3),x(4),x(5)\},\left\{x(3) x(4)+x(5) x(4)+x(3) x(5),m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5),\left( \begin{array}{ccc} x(1) & \frac{1}{(2 (\text{k1}\cdot n)+i \eta )} & 1 \\ x(2) & \frac{1}{(2 (\text{k2}\cdot n)+i \eta )} & 1 \\ x(3) & \frac{1}{(\text{k1}^2-m^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{k1}-\text{k2})^2-m^2+i \eta )} & 1 \\ x(5) & \frac{1}{(\text{k2}^2-m^2+i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(3)+x(4) & -x(4) \\ -x(4) & x(4)+x(5) \\ \end{array} \right),\left\{x(1) \left(-n^{\text{FCGV}(\text{mu})}\right),x(2) \left(-n^{\text{FCGV}(\text{mu})}\right)\right\},-m^2 (x(3)+x(4)+x(5)),1,0\right\}\right\}
From this output we can easily extract the integrand, its x_i-independent prefactor and the two Symanzik polynomials
{integrand, pref} = out[[1 ;; 2]]
{uPoly, fPoly} = out[[4]][[1 ;; 2]]
\left\{(x(3) x(4)+x(5) x(4)+x(3) x(5))^{3 \varepsilon -1} \left(m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right)^{-2 \varepsilon -1},-\Gamma (2 \varepsilon +1)\right\}
\left\{x(3) x(4)+x(5) x(4)+x(3) x(5),m^2 x(3) x(4)^2+m^2 x(3) x(5)^2+m^2 x(4) x(5)^2+m^2 x(3)^2 x(4)+m^2 x(3)^2 x(5)+m^2 x(4)^2 x(5)+3 m^2 x(3) x(4) x(5)+n^2 x(2)^2 x(3)+n^2 x(1)^2 x(4)+n^2 x(2)^2 x(4)+2 n^2 x(1) x(2) x(4)+n^2 x(1)^2 x(5)\right\}
Symbolic propagator powers are fully supported
[{I k, 0, -1/2 + ep}, {I (k + p), 0, 1}, EtaSign -> -1]
SFAD
= FCFeynmanParametrize[%, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep},
v1 -> {SPD[p] -> 1}] FinalSubstitutions
\frac{1}{(-k^2-i \eta )^{\text{ep}-\frac{1}{2}}.(-(k+p)^2-i \eta )}
\left\{(-x(1)-x(2))^{3 \;\text{ep}-\frac{7}{2}} x(2)^{\text{ep}-\frac{3}{2}} (-x(1) x(2))^{\frac{3}{2}-2 \;\text{ep}},\frac{(-1)^{\text{ep}+\frac{1}{2}} \Gamma \left(2 \;\text{ep}-\frac{3}{2}\right)}{\Gamma \left(\text{ep}-\frac{1}{2}\right)},\{x(1),x(2)\}\right\}
An alternative representation for symbolic powers can be obtained using the option SplitSymbolicPowers
[{I k, 0, -1/2 + ep}, {I (k + p), 0, 1}, EtaSign -> -1]
SFAD
= FCFeynmanParametrize[%, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep},
v2 -> {SPD[p] -> 1}, SplitSymbolicPowers -> True] FinalSubstitutions
\frac{1}{(-k^2-i \eta )^{\text{ep}-\frac{1}{2}}.(-(k+p)^2-i \eta )}
\left\{x(2)^{\text{ep}-\frac{1}{2}} \left(\left(\frac{1}{2} (1-2 \;\text{ep})+\frac{1}{2} (4-2 \;\text{ep})-1\right) x(1) (-x(1)-x(2))^{3 \;\text{ep}-\frac{7}{2}} (-x(1) x(2))^{\frac{1}{2}-2 \;\text{ep}}+\left(2 \;\text{ep}+\frac{1}{2} (2 \;\text{ep}-1)-3\right) (-x(1)-x(2))^{3 \;\text{ep}-\frac{9}{2}} (-x(1) x(2))^{\frac{3}{2}-2 \;\text{ep}}\right),\frac{(-1)^{\text{ep}+\frac{1}{2}} \Gamma \left(2 \;\text{ep}-\frac{3}{2}\right)}{\Gamma \left(\text{ep}+\frac{1}{2}\right)},\{x(1),x(2)\}\right\}
Even though the parametric integrals evaluate to different values, the product of the integral and its prefactor remains the same
Integrate[Normal[Series[v1[[1]] /. x[1] -> 1, {ep, 0, 0}]] /. x[1] -> 1, {x[2], 0, Infinity}]
[v1[[2]] %, {ep, 0, 0}] Normal@Series
\frac{2}{5}
-\frac{4 i}{15}
Integrate[Normal[Series[v2[[1]] /. x[1] -> 1, {ep, 0, 0}]] /. x[1] -> 1, {x[2], 0, Infinity}]
[v2[[2]] %, {ep, 0, 0}] Normal@Series
-\frac{1}{5}
-\frac{4 i}{15}
Calculate the simplest divergent triangle integral from QCDLoop
[];
FCClearScalarProducts[r] = 0;
SPD[s] = 0;
SPD[r, s] = -1/2;
SPD= FAD[{q, 0}, {q - r, 0}, {q - s, 0}] int
\frac{1}{q^2.(q-r)^2.(q-s)^2}
[int, q] ToPaVe
i \pi ^2 \;\text{C}_0(0,0,1,0,0,0)
= FCFeynmanParametrize[int, {q}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FeynmanIntegralPrefactor -> "LoopTools"] fp
\left\{(-x(2) x(3))^{-\text{ep}-1} (x(1)+x(2)+x(3))^{2 \;\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}
= Integrate[fp[[1]] /. x[2] -> 1, {x[1], 0, Infinity}, Assumptions -> {ep < 0, x[3] >= 0}] intRaw
-\frac{(-x(3))^{-\text{ep}-1} (x(3)+1)^{2 \;\text{ep}}}{2 \;\text{ep}}
Reintroduce the correct i \eta-prescription to get the imaginary part right
= Integrate[intRaw, {x[3], 0, Infinity}, Assumptions -> {ep < 0}] /. (-1)^(-ep) -> (-1 - I eta)^(-ep) intRes
\frac{(-1-i \;\text{eta})^{-\text{ep}} \Gamma (-\text{ep})^2}{2 \;\text{ep} \Gamma (-2 \;\text{ep})}
= (Series[fp[[2]] intRes, {ep, 0, 0}] // Normal) /. Log[-1 - I eta] -> Log[1] - I Pi res
\frac{1}{\text{ep}^2}+\frac{i \pi }{\text{ep}}-\frac{\pi ^2}{2}
Compare to the known result
= Series[ScaleMu^(2 ep)/ep^2 1/pp^2 (-pp - I eta)^(-ep), {ep, 0, 0}] /. Log[-pp - I eta] -> Log[pp] - I Pi // Normal resLit
\frac{1}{\text{ep}^2 \;\text{pp}^2}+\frac{2 \log (\mu )-\log (\text{pp})+i \pi }{\text{ep} \;\text{pp}^2}+\frac{4 \log ^2(\mu )-4 \log (\mu ) (\log (\text{pp})-i \pi )+(\log (\text{pp})-i \pi )^2}{2 \;\text{pp}^2}
- resLit) /. pp | ScaleMu -> 1 (res
0
Notice that one can also keep the i \eta-prescription explicit in the integrand by setting the option EtaSign
to True
. However, for integrating such representation using Mathematica’s Integrate
it is better to remove it
= FCFeynmanParametrize[int, {q}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FeynmanIntegralPrefactor -> "LoopTools", EtaSign -> True] tmp
\left\{(x(1)+x(2)+x(3))^{2 \;\text{ep}-1} (-x(2) x(3)-i \eta )^{-\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}
/. SMP["Eta"] -> 0 tmp
\left\{(-x(2) x(3))^{-\text{ep}-1} (x(1)+x(2)+x(3))^{2 \;\text{ep}-1},-\frac{\Gamma (1-2 \;\text{ep})}{\Gamma (1-\text{ep})^2},\{x(1),x(2),x(3)\}\right\}
= SFAD[{{k, -m^2/Q k . n - k . nb Q}, {-m^2, 1}}, {{k, -m^2/Q k . nb - k . n Q}, {-m^2, 1}}, {k, m^2}] int
\frac{1}{(k^2+-\frac{(k\cdot n) m^2}{Q}-Q (k\cdot \;\text{nb})+m^2+i \eta ).(k^2+-\frac{(k\cdot \;\text{nb}) m^2}{Q}-Q (k\cdot n)+m^2+i \eta ).(k^2-m^2+i \eta )}
Sometimes loop integrals may require additional regulators beyond dimensional regularization (e.g. in SCET). For such cases we may add extra propagators acting as regulators via the option ExtraPropagators
[int, {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[nb] -> 0, SPD[n] -> 0, SPD[nb, n] -> 2, Q -> 1},
FCFeynmanParametrize-> {SFAD[{{0, n . k}, {0, +1}, al}]}] ExtraPropagators
\left\{x(4)^{\text{al}-1} (x(1)+x(2)+x(3))^{\text{al}+2 \;\text{ep}-1} \left(m^4 x(2) x(3)+m^2 x(1)^2-2 m^2 x(2) x(3)-m^2 x(2) x(4)+x(2) x(3)-x(3) x(4)\right)^{-\text{al}-\text{ep}-1},\frac{(-1)^{\text{al}+3} \Gamma (\text{al}+\text{ep}+1)}{\Gamma (\text{al})},\{x(1),x(2),x(3),x(4)\}\right\}
The option FCReplaceMomenta
is useful when we want to replace external momenta by linear combinations of other momenta. If the coefficients are symbolic, please keep in mind that you need to declare them as being of type FCVariable
.
[m, FCVariable] = True;
DataType[Q, FCVariable] = True; DataType
[SFAD[k - pb, k + p, {k, m^2}], {k}, Names -> x, FCReplaceD -> {D -> 4 - 2 ep}, FinalSubstitutions -> {SPD[nb] -> 0, SPD[n] -> 0, SPD[nb, n] -> 2, Q -> 1},
FCFeynmanParametrize-> {SFAD[{{0, n . k}, {0, +1}, al}]}, FCReplaceMomenta -> {p -> (Q n/2 + m^2/Q nb/2), pb -> (Q nb/2 + m^2/Q n/2)}] ExtraPropagators
\left\{x(4)^{\text{al}-1} (x(1)+x(2)+x(3))^{\text{al}+2 \;\text{ep}-1} \left(m^4 (-x(2)) x(3)+m^2 x(1)^2-2 m^2 x(2) x(3)+m^2 x(2) x(4)-x(2) x(3)-x(3) x(4)\right)^{-\text{al}-\text{ep}-1},\frac{(-1)^{\text{al}+3} \Gamma (\text{al}+\text{ep}+1)}{\Gamma (\text{al})},\{x(1),x(2),x(3),x(4)\}\right\}
1-loop tadpole
[FAD[{q, m}], {q}, Names -> x, Method -> "Lee-Pomeransky"] FCFeynmanParametrize
\left\{\left(m^2 x(1)^2+x(1)\right)^{-D/2},-\frac{\Gamma \left(\frac{D}{2}\right)}{\Gamma (D-1)},\{x(1)\}\right\}
Massless 1-loop 2-point function
[FAD[q, q - p], {q}, Names -> x, Method -> "Lee-Pomeransky"] FCFeynmanParametrize
\left\{\left(-p^2 x(2) x(1)+x(1)+x(2)\right)^{-D/2},\frac{\Gamma \left(\frac{D}{2}\right)}{\Gamma (D-2)},\{x(1),x(2)\}\right\}
2-loop self-energy with 3 massive lines and two eikonal propagators
[{SFAD[{ p1, m^2}], SFAD[{ p3, m^2}],
FCFeynmanParametrize[{(p3 - p1), m^2}], SFAD[{{0, 2 p1 . n}}], SFAD[{{0, 2 p3 . n}}]}, {p1, p3},
SFADNames -> x, Method -> "Lee-Pomeransky", FCReplaceD -> {D -> 4 - 2 ep},
-> {SPD[n] -> 1, m -> 1}] FinalSubstitutions
\left\{\left(x(2) x(1)^2+x(3) x(1)^2+x(2)^2 x(1)+x(3)^2 x(1)+x(5)^2 x(1)+x(2) x(1)+3 x(2) x(3) x(1)+x(3) x(1)+x(2) x(3)^2+x(2) x(4)^2+x(3) x(4)^2+x(3) x(5)^2+x(2)^2 x(3)+x(2) x(3)+2 x(3) x(4) x(5)\right)^{\text{ep}-2},-\frac{\Gamma (2-\text{ep})}{\Gamma (1-3 \;\text{ep})},\{x(1),x(2),x(3),x(4),x(5)\}\right\}