ExpandPartialD[exp] expands noncommutative products of
QuantumFields and partial differentiation operators in
exp and applies the Leibniz rule.
By default the function assumes that there are no expressions outside
of exp on which the derivatives inside exp
could act. If this is not the case, please set the options
LeftPartialD or RIghtPartialD to
True.
Overview, ExplicitPartialD, LeftPartialD, LeftRightPartialD, PartialDRelations, RightPartialD, LeftRightNablaD, LeftRightNablaD2, LeftNablaD, RightNablaD.
RightPartialD[\[Mu]] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]]
ExpandPartialD[%]\vec{\partial }_{\mu }.A_{\mu }.A_{\nu }
A_{\mu }.\left(\partial _{\mu }A_{\nu }\right)+\left(\partial _{\mu }A_{\mu }\right).A_{\nu }
RightNablaD[i] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]]
ExpandPartialD[%]\vec{\nabla }^i.A_{\mu }.A_{\nu }
-A_{\mu }.\left(\partial _iA_{\nu }\right)-\left(\partial _iA_{\mu }\right).A_{\nu }
LeftRightPartialD[\[Mu]] . QuantumField[A, LorentzIndex[\[Nu]]]
ExpandPartialD[%]\overleftrightarrow{\partial }_{\mu }.A_{\nu }
\frac{1}{2} \left(\left(\partial _{\mu }A_{\nu }\right)-\overleftarrow{\partial }_{\mu }.A_{\nu }\right)
LeftRightNablaD[i] . QuantumField[A, LorentzIndex[\[Nu]]]
ExpandPartialD[%]\overleftrightarrow{\nabla }_i.A_{\nu }
\frac{1}{2} \left(\overleftarrow{\partial }_i.A_{\nu }-\left(\partial _iA_{\nu }\right)\right)
QuantumField[A, LorentzIndex[\[Mu]]] . (LeftRightPartialD[OPEDelta]^2) . QuantumField[A,
LorentzIndex[\[Rho]]]
ExpandPartialD[%]A_{\mu }.\overleftrightarrow{\partial }_{\Delta }^2.A_{\rho }
\frac{1}{4} \left(A_{\mu }.\left(\partial _{\Delta }\partial _{\Delta }A_{\rho }\right)-2 \left(\partial _{\Delta }A_{\mu }\right).\left(\partial _{\Delta }A_{\rho }\right)+\left(\partial _{\Delta }\partial _{\Delta }A_{\mu }\right).A_{\rho }\right)
8 LeftRightPartialD[OPEDelta]^38 \overleftrightarrow{\partial }_{\Delta }^3
ExplicitPartialD[%]\left(\vec{\partial }_{\Delta }-\overleftarrow{\partial }_{\Delta }\right){}^3
ExpandPartialD[%]-\overleftarrow{\partial }_{\Delta }.\overleftarrow{\partial }_{\Delta }.\overleftarrow{\partial }_{\Delta }+3 \overleftarrow{\partial }_{\Delta }.\overleftarrow{\partial }_{\Delta }.\vec{\partial }_{\Delta }-3 \overleftarrow{\partial }_{\Delta }.\vec{\partial }_{\Delta }.\vec{\partial }_{\Delta }+\vec{\partial }_{\Delta }.\vec{\partial }_{\Delta }.\vec{\partial }_{\Delta }
LC[\[Mu], \[Nu], \[Rho], \[Tau]] RightPartialD[\[Alpha], \[Mu], \[Beta], \[Nu]]
ExpandPartialD[%]\bar{\epsilon }^{\mu \nu \rho \tau } \vec{\partial }_{\alpha }.\vec{\partial }_{\mu }.\vec{\partial }_{\beta }.\vec{\partial }_{\nu }
0
CLC[i, j, k] RightNablaD[i, j, k]
ExpandPartialD[%]\bar{\epsilon }^{ijk} \vec{\nabla }^i.\vec{\nabla }^j.\vec{\nabla }^k
0
RightPartialD[CartesianIndex[i]] . QuantumField[S, x]
% // ExpandPartialD\vec{\partial }_i.S^x
\left(\partial _iS^x\right)
RightPartialD[{CartesianIndex[i], x}] . QuantumField[S, x]
% // ExpandPartialD\vec{\partial }_{\{i,x\}}.S^x
\left(\partial _{\{i,x\}}S^x\right)
By default the derivative won’t act on anything outside of the input
expression. But it can be made to by setting the option
RightPartialD to True
ExpandPartialD[RightPartialD[\[Mu]] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]]]A_{\mu }.\left(\partial _{\mu }A_{\nu }\right)+\left(\partial _{\mu }A_{\mu }\right).A_{\nu }
ExpandPartialD[RightPartialD[\[Mu]] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]], RightPartialD -> True]A_{\mu }.\left(\partial _{\mu }A_{\nu }\right)+\left(\partial _{\mu }A_{\mu }\right).A_{\nu }+A_{\mu }.A_{\nu }.\vec{\partial }_{\mu }
The same applies also to LeftPartialD
ExpandPartialD[QuantumField[A, LorentzIndex[\[Nu]]] . LeftNablaD[i]]-\left(\partial _iA_{\nu }\right)
ExpandPartialD[QuantumField[A, LorentzIndex[\[Nu]]] . LeftNablaD[i], LeftPartialD -> True]-\left(\partial _iA_{\nu }\right)-\overleftarrow{\partial }_i.A_{\nu }