LeftRightPartialD[mu]
denotes \overleftrightarrow {\partial }_{\mu }, acting to the left and right.
ExplicitPartialD[LeftRightPartialD[mu]]
gives 1/2 (RightPartialD[mu] - LeftPartialD[mu])
.
Overview, ExplicitPartialD, ExpandPartialD, FCPartialD, LeftPartialD, LeftRightPartialD2, RightPartialD.
[\[Mu]]
LeftRightPartialD
[%] ExplicitPartialD
\overleftrightarrow{\partial }_{\mu }
\frac{1}{2} \left(\vec{\partial }_{\mu }-\overleftarrow{\partial }_{\mu }\right)
[\[Mu]] . QuantumField[A, LorentzIndex[\[Nu]]]
LeftRightPartialD
[%] ExpandPartialD
\overleftrightarrow{\partial }_{\mu }.A_{\nu }
\frac{1}{2} \left(\left.(\partial _{\mu }A_{\nu }\right)-\overleftarrow{\partial }_{\mu }.A_{\nu }\right)
[A, LorentzIndex[\[Mu]]] . LeftRightPartialD[\[Nu]] . QuantumField[A, LorentzIndex[\[Rho]]]
QuantumField
[%] ExpandPartialD
A_{\mu }.\overleftrightarrow{\partial }_{\nu }.A_{\rho }
\frac{1}{2} \left(A_{\mu }.\left(\left.(\partial _{\nu }A_{\rho }\right)\right)-\left(\left.(\partial _{\nu }A_{\mu }\right)\right).A_{\rho }\right)