FeynHelpers manual (development version)

LToolsExpandInEpsilon

LToolsExpandInEpsilon is an option for LToolsEvaluate. When set to True (default), the result returned by LoopTools and multiplied with proper conversion factors will be expanded around \varepsilon = 0 to \mathcal{O}(\varepsilon^0).

The \varepsilon-dependent conversion factors arise from the differences in the normalization between Passarino-Veltman functions in FeynCalc and LoopTools. In addition to that, the prefactor specified via LToolsImplicitPrefactor may also depend on \varepsilon.

Setting this option to False will leave the prefactors unexpanded, which might sometimes be useful when examining the obtained results.

See also

Overview, LToolsEvaluate, LToolsImplicitPrefactor.

Examples

LToolsLoadLibrary[]

\text{LoopTools library loaded.}

(* ====================================================
   FF 2.0, a package to evaluate one-loop integrals
 written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam
 ====================================================
 for the algorithms used see preprint NIKHEF-H 89/17,
 'New Algorithms for One-loop Integrals', by G.J. van
 Oldenborgh and J.A.M. Vermaseren, published in 
 Zeitschrift fuer Physik C46(1990)425.
 ====================================================*)

The default behavior of LToolsEvaluate is to do the \varepsilon-expansion automatically

LToolsEvaluate[FAD[q, q - p], q, InitialSubstitutions -> {SPD[p] -> 1}]

\frac{0.\, +9.8696 i}{\varepsilon }-(31.0063\, -2.74429 i)

This can be disabled by setting LToolsExpandInEpsilon to False

LToolsEvaluate[FAD[q, q - p], q, InitialSubstitutions -> {SPD[p] -> 1}, LToolsExpandInEpsilon -> False]

\frac{(0.\, +1. i) \pi ^{2-\varepsilon } \Gamma (1-\varepsilon )^2 \Gamma (\varepsilon +1)}{\varepsilon \Gamma (1-2 \varepsilon )}-\frac{(3.14159\, -2. i) \pi ^{2-\varepsilon } \Gamma (1-\varepsilon )^2 \Gamma (\varepsilon +1)}{\Gamma (1-2 \varepsilon )}