FeynHelpers manual (development version)

LToolsImplicitPrefactor

LToolsImplicitPrefactor is an option for LToolsEvaluate. It specifies a prefactor that does not show up explicitly in the input expression, but is understood to appear in front of every Passarino-Veltman function. The default value is 1.

You may want to use LToolsImplicitPrefactor->1/(2Pi)^D when working with 1-loop amplitudes, if no explicit prefactor has been introduced from the very beginning.

See also

Overview, LToolsEvaluate.

Examples

LToolsLoadLibrary[]

\text{LoopTools library loaded.}

(* ====================================================
   FF 2.0, a package to evaluate one-loop integrals
 written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam
 ====================================================
 for the algorithms used see preprint NIKHEF-H 89/17,
 'New Algorithms for One-loop Integrals', by G.J. van
 Oldenborgh and J.A.M. Vermaseren, published in 
 Zeitschrift fuer Physik C46(1990)425.
 ====================================================*)

Here the prefactor i \pi^2 arises from the conversion of \int d^D q\, 1/(q^2-m^2) to A_0(m^2)

LToolsEvaluate[FAD[{q, m}], q, InitialSubstitutions -> {m -> 5}]

\frac{0.\, +246.74 i}{\varepsilon }-(0.\, +972.359 i)

LToolsEvaluate[FAD[{q, m}], q, InitialSubstitutions -> {m -> 5}, Head -> keep]

\frac{i \pi ^2 \;\text{keep}(25.)}{\varepsilon }+i \pi ^2 (\text{keep}(-55.4719)-\gamma \;\text{keep}(25.)-\text{keep}(25.) \log (\pi ))

This recovers the textbook prefactor

LToolsEvaluate[FAD[{q, m}], q, InitialSubstitutions -> {m -> 5}, LToolsImplicitPrefactor -> 1/(2 Pi)^(4 - 2 Epsilon)]

\frac{0.\, +0.158314 i}{\varepsilon }-(0.\, +0.0419639 i)

(PaXEvaluate[FAD[{q, m}], q, PaXImplicitPrefactor -> 1/(2 Pi)^(4 - 2 Epsilon)] /. {m -> 5, ScaleMu^2 -> 1}) // N

\frac{0.\, +0.158314 i}{\varepsilon }-(0.\, +0.0419639 i)

If the input expression contains both loop and non-loop terms, only the terms containing a PaVe-function will be multiplied by the implicit prefactor

LToolsEvaluate[extra + FAD[{q, m}], q, InitialSubstitutions -> {m -> 2}, LToolsExpandInEpsilon -> False]

\frac{(0.\, +4. i) \pi ^{2-\varepsilon } \Gamma (\varepsilon +1) \Gamma (1-\varepsilon )^2}{\varepsilon \Gamma (1-2 \varepsilon )}-\frac{(0.\, +1.54518 i) \pi ^{2-\varepsilon } \Gamma (\varepsilon +1) \Gamma (1-\varepsilon )^2}{\Gamma (1-2 \varepsilon )}+\text{extra}