SUNT[a]
is the SU(N)
T^a generator in the fundamental
representation. The fundamental indices are implicit.
Overview, CA, CF, SUND, SUNDelta, SUNF, SUNSimplify.
[a] SUNT
T^a
Since T^a is a noncommutative
object, products have to separated by a Dot
(.
).
[a] . SUNT[b] . SUNT[c] SUNT
T^a.T^b.T^c
[a, b, c, d] SUNT
T^a.T^b.T^c.T^d
[SUNT[a, b, a], SUNNToCACF -> False] SUNSimplify
-\frac{T^b}{2 N}
[SUNT[a, b, b, a]] SUNSimplify
C_F^2
[SUNT[a, b, a]] SUNSimplify
-\frac{1}{2} T^b \left(C_A-2 C_F\right)
[SUNT[a, b, a], SUNNToCACF -> False] SUNSimplify
-\frac{T^b}{2 N}
The normalization of the generators is chosen in the standard way, therefore \textrm{Tr}(T^aT^b) = \frac{1}{2} \delta _{ab}
[SUNT[a, b]] SUNTrace
\frac{\delta ^{ab}}{2}
In case you want T_f, you need to
include a factor 2*Tf
inside the trace.
[2 Tf SUNT[a, b]] SUNTrace
T_f \delta ^{ab}
[SUNT[a, b]] // StandardForm SUNTrace
\frac{1}{2} \;\text{SUNDelta}[\text{SUNIndex}[a],\text{SUNIndex}[b]]
[a] // FCI // StandardForm
SUNT
(*SUNT[SUNIndex[a]]*)
[a] // FCI // FCE // StandardForm
SUNT
(*SUNT[a]*)