SUND[a, b, c]
are the symmetric SU(N) d_{abc}.
Overview, SUNDelta, SUNF, SUNSimplify.
[a, b, c] SUND
d^{abc}
[a, b, c, Explicit -> True] SUND
2 \left(\text{tr}(T^a.T^b.T^c)\right)+2 \left(\text{tr}(T^b.T^a.T^c)\right)
[c, a, b] SUND
d^{abc}
[a, b, b] SUND
d^{abb}
[SUND[a, b, c] SUND[a, b, c]] SUNSimplify
-2 \left(4-C_A^2\right) C_F
[SUND[a, b, c] SUND[a, b, c], SUNNToCACF -> False] // Factor2 SUNSimplify
\frac{\left(1-N^2\right) \left(4-N^2\right)}{N}
[SUND[a, b, c] SUND[e, b, c], SUNNToCACF -> False] // Factor2 SUNSimplify
-\frac{\left(4-N^2\right) \delta ^{ae}}{N}
[a, b, c] // StandardForm
SUND
(*SUND[a, b, c]*)
[a, b, c] // FCI // StandardForm
SUND
(*SUND[SUNIndex[a], SUNIndex[b], SUNIndex[c]]*)
[a, b, c] // FCI // FCE // StandardForm
SUND
(*SUND[a, b, c]*)