SUNSimplify[exp]
simplifies color algebraic expressions
involving color matrices with implicit (SUNT
) or explicit
fundamental indices (SUNTF
) as well as structure constants
(SUND
, SUNF
) and Kronecker deltas
(SD
, SDF
).
If the option Explicit
is set to True
(default is False
), the structure constants will be
rewritten in terms of traces. However, since traces with 2 or 3 color
matrices are by default converted back into structure constants, you
must also set the option SUNTraceEvaluate
to
False
(default is Automatic
) in order to have
unevaluated color traces in the output.
Overview, SUNTrace, SUNT, SUNTF, SUNF, SUND, SUNTraceEvaluate.
[a, b] SUNDelta[b, c]
SUNDelta
[%] SUNSimplify
\delta ^{ab} \delta ^{bc}
\delta ^{ac}
[a] . SUNT[a]
SUNT
[%] SUNSimplify
T^a.T^a
C_F
[SUNT[a] . SUNT[a], SUNNToCACF -> False] SUNSimplify
\frac{N^2-1}{2 N}
[a, r, s] SUNF[b, r, s]
SUNF
[%] SUNSimplify
f^{ars} f^{brs}
C_A \delta ^{ab}
[a, b, c] SUNF[a, b, c]
SUNF
[%] SUNSimplify
\left(f^{abc}\right)^2
2 C_A^2 C_F
[a, b, c] SUNF[d, b, c]
SUNF
[%] SUNSimplify
f^{abc} f^{dbc}
C_A \delta ^{ad}
[a, b, c] SUND[d, b, c]
SUNF
[%, Explicit -> True] SUNSimplify
d^{bcd} f^{abc}
0
[a, b, c] SUND[a, b, c]
SUND
[%, SUNNToCACF -> False] // Factor2 SUNSimplify
\left(d^{abc}\right)^2
\frac{\left(1-N^2\right) \left(4-N^2\right)}{N}
[SUND[a, b, c] SUND[e, b, c], SUNNToCACF -> False] // Simplify SUNSimplify
\frac{(N-2) (N+2) \delta ^{ae}}{N}
[SUNF[a, b, c], Explicit -> True] SUNSimplify
f^{abc}
[SUNF[a, b, c], Explicit -> True, SUNTraceEvaluate -> False] SUNSimplify
2 i \;\text{tr}\left(T^a.T^c.T^b\right)-2 i \;\text{tr}\left(T^a.T^b.T^c\right)
[SUND[a, b, c], Explicit -> True] SUNSimplify
d^{abc}
[SUND[a, b, c], Explicit -> True, SUNTraceEvaluate -> False] SUNSimplify
2 \;\text{tr}\left(T^a.T^b.T^c\right)+2 \;\text{tr}\left(T^a.T^c.T^b\right)
[a, b, c] SUNT[c, b, a]
SUNF
[%] SUNSimplify
f^{abc} T^c.T^b.T^a
-\frac{1}{2} i C_A C_F
[a, b, e] SUNF[c, d, e] + SUNF[a, b, z] SUNF[c, d, z]
SUNF
[%, SUNIndexNames -> {j}] SUNSimplify
f^{abe} f^{cde}+f^{abz} f^{cdz}
2 f^{abj} f^{cdj}
[1 - SD[i, i]] SUNSimplify
2-C_A^2
[SUNF[a, b, c] SUND[d, b, c]] SUNSimplify
0
[SUNF[a, b, c] SUND[a, b, d]] SUNSimplify
0
[SUNF[a, b, c] SUND[a, d, c]] SUNSimplify
0
[SUND[a, b, c] SUND[d, b, c]] SUNSimplify
-\left(\left(4-C_A^2\right) \delta ^{ad} \left(C_A-2 C_F\right)\right)
[SUNTrace[SUNT[i1, i2, i1, i2]], FCE -> True] SUNSimplify
-\frac{C_F}{2}