FeynCalc manual (development version)

SPLP

SPLP[p,q,n,nb] denotes the positive component in the lightcone decomposition of the scalar product p \cdot q along the vectors n and nb. It corresponds to \frac{1}{2} (p \cdot n) (q \cdot \bar{n}).

If one omits n and nb, the program will use default vectors specified via $FCDefaultLightconeVectorN and $FCDefaultLightconeVectorNB.

See also

Overview, Pair, FVLN, FVLP, FVLR, SPLN, SPLR, MTLP, MTLN, MTLR.

Examples

SPLP[p, q, n, nb]

\frac{1}{2} \left(\overline{n}\cdot \overline{p}\right) \left(\overline{\text{nb}}\cdot \overline{q}\right)

StandardForm[SPLP[p, q, n, nb] // FCI]

\frac{1}{2} \;\text{Pair}[\text{Momentum}[n],\text{Momentum}[p]] \;\text{Pair}[\text{Momentum}[\text{nb}],\text{Momentum}[q]]

Notice that the properties of n and nb vectors have to be set by hand before doing the actual computation

SPLP[p1 + p2 + n, q, n, nb] // ExpandScalarProduct

\frac{1}{2} \left(\overline{\text{nb}}\cdot \overline{q}\right) \left(\overline{n}\cdot \overline{\text{p1}}+\overline{n}\cdot \overline{\text{p2}}+\overline{n}^2\right)

FCClearScalarProducts[]
SP[n] = 0;
SP[nb] = 0;
SP[n, nb] = 2;
SPLP[p1 + p2 + n, q, n, nb] // ExpandScalarProduct

\frac{1}{2} \left(\overline{\text{nb}}\cdot \overline{q}\right) \left(\overline{n}\cdot \overline{\text{p1}}+\overline{n}\cdot \overline{\text{p2}}\right)

FCClearScalarProducts[]