Pair[x, y]
is the head of a special pairing used in the
internal representation: x
and y
may have
heads LorentzIndex
or Momentum
.
If both x
and y
have head
LorentzIndex
, the metric tensor (e.g. g^{\mu \nu}) is understood.
If x
and y
have head Momentum
,
a scalar product (e.g. p \cdot q) is
meant.
If one of x
and y
has head
LorentzIndex
and the other Momentum
, a Lorentz
vector (e.g. p^{\mu }) is implied.
Overview, FV, FVD, MT, MTD, ScalarProduct, SP, SPD.
This represents a 4-dimensional metric tensor
[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]]] Pair
\bar{g}^{\alpha \beta }
This is a D-dimensional metric tensor
[LorentzIndex[\[Alpha], D], LorentzIndex[\[Beta], D]] Pair
g^{\alpha \beta }
If the Lorentz indices live in different dimensions, this gets resolved according to the t’Hooft-Veltman-Breitenlohner-Maison prescription
[LorentzIndex[\[Alpha], n - 4], LorentzIndex[\[Beta]]] Pair
0
A 4-dimensional Lorentz vector
[LorentzIndex[\[Alpha]], Momentum[p]] Pair
\overline{p}^{\alpha }
A D-dimensional Lorentz vector
[LorentzIndex[\[Alpha], D], Momentum[p, D]] Pair
p^{\alpha }
4-dimensional scalar products of Lorentz vectors
[Momentum[q], Momentum[p]] Pair
\overline{p}\cdot \overline{q}
[Momentum[p], Momentum[p]] Pair
\overline{p}^2
[Momentum[p - q], Momentum[p]] Pair
\overline{p}\cdot (\overline{p}-\overline{q})
[Momentum[p], Momentum[p]]^2 Pair
\overline{p}^4
[Momentum[p], Momentum[p]]^3 Pair
\overline{p}^6
[Pair[Momentum[p - q], Momentum[p]]] ExpandScalarProduct
\overline{p}^2-\overline{p}\cdot \overline{q}
[Momentum[-q], Momentum[p]] + Pair[Momentum[q], Momentum[p]] Pair
0