FVLP
FVLP[p,mu,n,nb]
denotes the positive component in the
lightcone decomposition of the Lorentz vector pμ along the vectors n
and
nb
. It corresponds to 21nˉμ(p⋅n).
If one omits n
and nb
, the program will use
default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
See also
Overview, Pair, FVLN, FVLR, SPLP, SPLN, SPLR, MTLP, MTLN, MTLR.
Examples
21nbμ(n⋅p)
StandardForm[FVLP[p, \[Mu], n, nb] // FCI]
21Pair[LorentzIndex[μ],Momentum[nb]]Pair[Momentum[n],Momentum[p]]
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
FVLP[p, \[Mu], n, nb] FVLN[q, \[Mu], n, nb] // Contract
41(n⋅nb)(n⋅p)(nb⋅q)
FVLP[p, \[Mu], n, nb] FVLP[q, \[Mu], n, nb] // Contract
41nb2(n⋅p)(n⋅q)
FCClearScalarProducts[]
SP[n] = 0;
SP[nb] = 0;
SP[n, nb] = 2;
FVLP[p, \[Mu], n, nb] FVLN[q, \[Mu], n, nb] // Contract
21(n⋅p)(nb⋅q)
FVLP[p, \[Mu], n, nb] FVLP[q, \[Mu], n, nb] // Contract
0