FeynCalc manual (development version)

PaVeToABCD

PaVeToABCD[expr] converts suitable PaVe functions to direct Passarino-Veltman functions (A0, A00, B0, B1, B00, B11, C0, D0). PaVeToABCD is nearly the inverse of ToPaVe2.

See also

Overview, ToPaVe, ToPaVe2, A0, A00, B0, B1, B00, B11, C0, D0.

Examples

PaVe[0, {pp}, {m1^2, m2^2}] 
 
ex = PaVeToABCD[%]

B0(pp,m12,m22)\text{B}_0\left(\text{pp},\text{m1}^2,\text{m2}^2\right)

B0(pp,m12,m22)\text{B}_0\left(\text{pp},\text{m1}^2,\text{m2}^2\right)

ex // FCI // StandardForm

(*B0[pp, m1^2, m2^2]*)
PaVe[0, {SPD[p1], 0, SPD[p2]}, {m1^2, m2^2, m3^2}] 
 
ex = PaVeToABCD[%]

C0(0,p12,p22,m32,m22,m12)\text{C}_0\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)

C0(0,p12,p22,m32,m22,m12)\text{C}_0\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)

ex // FCI // StandardForm

(*C0[0, Pair[Momentum[p1, D], Momentum[p1, D]], Pair[Momentum[p2, D], Momentum[p2, D]], m3^2, m2^2, m1^2]*)
PaVe[0, 0, {SPD[p1], 0, SPD[p2]}, {m1^2, m2^2, m3^2}] 
 
ex = PaVeToABCD[%]

C00(0,p12,p22,m32,m22,m12)\text{C}_{00}\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)

C00(0,p12,p22,m32,m22,m12)\text{C}_{00}\left(0,\text{p1}^2,\text{p2}^2,\text{m3}^2,\text{m2}^2,\text{m1}^2\right)

ex // FCI // StandardForm

(*PaVe[0, 0, {0, Pair[Momentum[p1, D], Momentum[p1, D]], Pair[Momentum[p2, D], Momentum[p2, D]]}, {m3^2, m2^2, m1^2}]*)