B1[pp, ma^2, mb^2]
the Passarino-Veltman B_1-function. All arguments are scalars and
have dimension mass squared.
Overview, B0, B00, B11, PaVe, PaVeReduce.
[SPD[p], m^2, M^2] B1
-\frac{\left(m^2-M^2+p^2\right) \;\text{B}_0\left(p^2,m^2,M^2\right)}{2 p^2}+\frac{\text{A}_0\left(m^2\right)}{2 p^2}-\frac{\text{A}_0\left(M^2\right)}{2 p^2}
[SPD[p], m^2, M^2, BReduce -> False] B1
\text{B}_1\left(p^2,m^2,M^2\right)
[SP[p], m^2, m^2] B1
-\frac{1}{2} \;\text{B}_0\left(\overline{p}^2,m^2,m^2\right)
[SPD[p], m^2, m^2, BReduce -> False] B1
\text{B}_1\left(p^2,m^2,m^2\right)
[m^2, m^2, 0] B1
\frac{\text{A}_0\left(m^2\right)}{2 m^2}-\text{B}_0\left(m^2,0,m^2\right)
[m^2, m^2, 0, BReduce -> False] B1
\text{B}_1\left(m^2,m^2,0\right)
[0, 0, m^2] B1
\text{B}_1\left(0,0,m^2\right)
[pp, SmallVariable[SMP["m_e"]^2], Subsuperscript[m, 2, 2]] B1
-\frac{(\text{pp}-m_2^2) \;\text{B}_0\left(\text{pp},m_e^2,m_2^2\right)}{2 \;\text{pp}}-\frac{\text{A}_0(m_2^2)}{2 \;\text{pp}}