B11[pp, ma^2, mb^2]
is the Passarino-Veltman B_{11}-function, i.e. the coefficient
function of p^{\mu } p^{\nu }. All
arguments are scalars and have dimension mass squared.
[SPD[p], m^2, M^2] B11
-\frac{\left(D m^4-2 D m^2 M^2+2 D m^2 p^2+D M^4-2 D M^2 p^2+D p^4-4 m^2 p^2\right) \;\text{B}_0\left(p^2,m^2,M^2\right)}{4 (1-D) p^4}+\frac{D \;\text{A}_0\left(m^2\right) \left(m^2-M^2+p^2\right)}{4 (1-D) p^4}-\frac{\text{A}_0\left(M^2\right) \left(D m^2-D M^2+3 D p^2-4 p^2\right)}{4 (1-D) p^4}
[SPD[p], m^2, M^2, BReduce -> False] B11
\text{B}_{11}\left(p^2,m^2,M^2\right)
[SPD[p], m^2, m^2] B11
\frac{\left(4 m^2-D p^2\right) \;\text{B}_0\left(p^2,m^2,m^2\right)}{4 (1-D) p^2}+\frac{(2-D) \;\text{A}_0\left(m^2\right)}{2 (1-D) p^2}
[SPD[p], m^2, m^2, BReduce -> False] B11
\text{B}_{11}\left(p^2,m^2,m^2\right)
[0, m^2, m^2] B11
\frac{1}{3} \;\text{B}_0\left(0,m^2,m^2\right)
[0, m^2, m^2, BReduce -> False] B11
\text{B}_{11}\left(0,m^2,m^2\right)
[SmallVariable[M^2], m^2, m^2] B11
\frac{m^2 \;\text{B}_0\left(M^2,m^2,m^2\right)}{(1-D) M^2}+\frac{(2-D) \;\text{A}_0\left(m^2\right)}{2 (1-D) M^2}
[SmallVariable[M^2], m^2, m^2, BReduce -> False] B11
\text{B}_{11}\left(M^2,m^2,m^2\right)