OneLoop[q, amplitude]
calculates the 1-loop Feynman
diagram amplitude. The argument q
denotes the integration
variable, i.e., the loop momentum.
OneLoop[name, q, amplitude]
has as first argument a name of
the amplitude. If the second argument has head FeynAmp
then
OneLoop[q, FeynAmp[name, k, expr]]
and
OneLoop[FeynAmp[name, k, expr]]
tranform to
OneLoop[name, k, expr]
. OneLoop
is deprecated,
please use TID
instead!
Overview, ToPaVe, ToPaVe2, A0, A00, B0, B1, B00, B11, C0, D0.
-I/Pi^2 FAD[{q, m}]
[q, %] OneLoop
-\frac{i}{\pi ^2 \left(q^2-m^2\right)}
\text{A}_0\left(m^2\right)
I ((el^2)/(16 Pi^4 (1 - D))) FAD[{q, mf}, {q - k, mf}] DiracTrace[(mf + GSD[q - k]) . GAD[\[Mu]] . (mf + GSD[q]) . GAD[\[Mu]]]
[q, %] OneLoop
\frac{i \;\text{el}^2 \;\text{tr}\left((\gamma \cdot (q-k)+\text{mf}).\gamma ^{\mu }.(\text{mf}+\gamma \cdot q).\gamma ^{\mu }\right)}{16 \pi ^4 (1-D) \left(q^2-\text{mf}^2\right).\left((q-k)^2-\text{mf}^2\right)}
\frac{\text{el}^2 \left(-\frac{8 \;\text{mf}^2 \;\text{B}_0\left(\overline{k}^2,\text{mf}^2,\text{mf}^2\right)}{1-D}+\frac{2 (2-D) \overline{k}^2 \;\text{B}_0\left(\overline{k}^2,\text{mf}^2,\text{mf}^2\right)}{1-D}+\frac{4 D \;\text{A}_0\left(\text{mf}^2\right)}{1-D}-\frac{8 \;\text{A}_0\left(\text{mf}^2\right)}{1-D}\right)}{16 \pi ^2}