GordonSimplify[exp] rewrites spinor chains describing a
vector or an axial-vector current using Gordon identities.
Overview, DiracGamma, Spinor, SpinorChainTrick.
SpinorUBar[p1, m1] . GA[\[Mu]] . SpinorU[p2, m2]
GordonSimplify[%]\bar{u}(\text{p1},\text{m1}).\bar{\gamma }^{\mu }.u(\text{p2},\text{m2})
\frac{\left(\overline{\text{p1}}+\overline{\text{p2}}\right)^{\mu } \left(\varphi (\overline{\text{p1}},\text{m1})\right).\left(\varphi (\overline{\text{p2}},\text{m2})\right)}{\text{m1}+\text{m2}}+\frac{i \left(\varphi (\overline{\text{p1}},\text{m1})\right).\sigma ^{\mu \overline{\text{p1}}-\overline{\text{p2}}}.\left(\varphi (\overline{\text{p2}},\text{m2})\right)}{\text{m1}+\text{m2}}
SpinorUBar[p1, m1] . GA[\[Mu], 5] . SpinorV[p2, m2]
GordonSimplify[%]\bar{u}(\text{p1},\text{m1}).\bar{\gamma }^{\mu }.\bar{\gamma }^5.v(\text{p2},\text{m2})
\frac{\left(\overline{\text{p1}}+\overline{\text{p2}}\right)^{\mu } \left(\varphi (\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^5.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}+\text{m2}}+\frac{i \left(\varphi (\overline{\text{p1}},\text{m1})\right).\sigma ^{\mu \overline{\text{p1}}-\overline{\text{p2}}}.\bar{\gamma }^5.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}+\text{m2}}
Relations involving projectors can be used to trade the right projector for a left one
SpinorVBar[p1, m1] . GA[\[Mu], 6] . SpinorV[p2, m2]
GordonSimplify[%]\bar{v}(\text{p1},\text{m1}).\bar{\gamma }^{\mu }.\bar{\gamma }^6.v(\text{p2},\text{m2})
-\frac{i \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\sigma ^{\mu \overline{\text{p1}}-\overline{\text{p2}}}.\bar{\gamma }^6.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}-\frac{\text{m2} \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\mu }.\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}-\frac{\left(\overline{\text{p1}}+\overline{\text{p2}}\right)^{\mu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^6.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}
Use the Select option to achieve the opposite
ex = SpinorVBar[p1, m1] . GA[\[Mu], 7] . SpinorV[p2, m2]
GordonSimplify[ex]\bar{v}(\text{p1},\text{m1}).\bar{\gamma }^{\mu }.\bar{\gamma }^7.v(\text{p2},\text{m2})
\left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\mu }.\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)
GordonSimplify[ex, Select -> {{Spinor[__], DiracGamma[__], GA[7], Spinor[__]}}]-\frac{i \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\sigma ^{\mu \overline{\text{p1}}-\overline{\text{p2}}}.\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}-\frac{\text{m2} \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\mu }.\bar{\gamma }^6.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}-\frac{\left(\overline{\text{p1}}+\overline{\text{p2}}\right)^{\mu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}
We can choose between having expressions proportional to 1/m_1 (mass of the first spinor) or 1/m_2 (mass of the second spinor)
GordonSimplify[SpinorVBar[p1, m1] . GA[\[Mu], 6] . SpinorV[p2, m2], Inverse -> First]-\frac{i \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\sigma ^{\mu \overline{\text{p1}}-\overline{\text{p2}}}.\bar{\gamma }^6.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}-\frac{\text{m2} \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\mu }.\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}-\frac{\left(\overline{\text{p1}}+\overline{\text{p2}}\right)^{\mu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^6.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m1}}
GordonSimplify[SpinorVBar[p1, m1] . GA[\[Mu], 6] . SpinorV[p2, m2], Inverse -> Last]-\frac{i \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\sigma ^{\mu \overline{\text{p1}}-\overline{\text{p2}}}.\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m2}}-\frac{\text{m1} \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\mu }.\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m2}}-\frac{\left(\overline{\text{p1}}+\overline{\text{p2}}\right)^{\mu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^7.\left(\varphi (-\overline{\text{p2}},\text{m2})\right)}{\text{m2}}
In D-dimensions chiral Gordon identities are scheme dependent!
ex = SpinorVBarD[p1, m1] . GAD[\[Mu], 5] . SpinorVD[p2, m2]\bar{v}(\text{p1},\text{m1}).\gamma ^{\mu }.\bar{\gamma }^5.v(\text{p2},\text{m2})
FCGetDiracGammaScheme[]
GordonSimplify[ex]\text{NDR}
-\frac{(\text{p1}+\text{p2})^{\mu } (\varphi (-\text{p1},\text{m1})).\bar{\gamma }^5.(\varphi (-\text{p2},\text{m2}))}{\text{m1}-\text{m2}}-\frac{i (\varphi (-\text{p1},\text{m1})).\sigma ^{\mu \;\text{p1}-\text{p2}}.\bar{\gamma }^5.(\varphi (-\text{p2},\text{m2}))}{\text{m1}-\text{m2}}
FCSetDiracGammaScheme["BMHV"]
GordonSimplify[ex]\text{BMHV}
-\frac{i (\varphi (-\text{p1},\text{m1})).\sigma ^{\mu \;\text{p1}-\text{p2}}.\bar{\gamma }^5.(\varphi (-\text{p2},\text{m2}))}{\text{m1}-\text{m2}}-\frac{(\text{p1}+\text{p2})^{\mu } (\varphi (-\text{p1},\text{m1})).\bar{\gamma }^5.(\varphi (-\text{p2},\text{m2}))}{\text{m1}-\text{m2}}+\frac{2 (\varphi (-\text{p1},\text{m1})).\gamma ^{\mu }.\left(\hat{\gamma }\cdot \hat{\text{p2}}\right).\bar{\gamma }^5.(\varphi (-\text{p2},\text{m2}))}{\text{m1}-\text{m2}}
FCSetDiracGammaScheme["NDR"]\text{NDR}