Spinor[p, m, o]
is the head of Dirac spinors. Which of
the spinors u, v, \bar{u}
or \bar{v} is understood, depends on
the sign of the momentum argument p
and the relative
position of Spinor
in the chain.
Spinor[Momentum[p], m]
means \bar{u} if it stands at the beginning of the
chain.
Spinor[Momentum[p], m]
means u if it stands at the end of the
chain.
Spinor[-Momentum[p], m]
means \bar{v} if it stands at the beginning of the
chain.
Spinor[-Momentum[p], m]
means v if it stands at the end of the
chain.
Spinors of fermions of mass m are normalized to have \bar{u} u=2 m and \bar{v} v=-2 m.
The optional argument o
can be used for additional
degrees of freedom. If no optional argument o
is supplied,
a 1
is substituted in.
Overview, FermionSpinSum, DiracSimplify, SpinorU, SpinorV, SpinorUBar, SpinorVBar, SpinorUBarD, SpinorUD, SpinorVD, SpinorVBarD.
[Momentum[p]] Spinor
\varphi (\overline{p})
[Momentum[p], m] Spinor
\varphi (\overline{p},m)
FeynCalc uses covariant normalization (as opposed to e.g. the normalization used in Bjorken & Drell).
[Momentum[p], m] . Spinor[Momentum[p], m] // DiracSimplify Spinor
2 m
[Spinor[-Momentum[p], m] . GS[p]] DiracSimplify
-m \left(\varphi (-\overline{p},m)\right)
[Momentum[p]] // StandardForm
Spinor
(*Spinor[Momentum[p], 0, 1]*)
[Spinor[Momentum[p]], D] // StandardForm
ChangeDimension
(*Spinor[Momentum[p, D], 0, 1]*)
[Momentum[p], m] // StandardForm
Spinor
(*Spinor[Momentum[p], m, 1]*)
SmallVariable
s are discarded by Spinor
.
[Momentum[p], SmallVariable[m]] // StandardForm
Spinor
(*Spinor[Momentum[p], 0, 1]*)