DiracGamma[x, dim]
is the head of all Dirac matrices and
slashes (in the internal representation). Use GA
,
GAD
, GS
or GSD
for manual (short)
input.
DiracGamma[x, 4]
simplifies to
DiracGamma[x]
.
DiracGamma[5]
is \gamma
^5.
DiracGamma[6]
is (1+\gamma
^5)/2.
DiracGamma[7]
is (1-\gamma
^5)/2.
Overview, DiracGammaExpand, GA, DiracSimplify, GS, DiracTrick.
[5] DiracGamma
\bar{\gamma }^5
[LorentzIndex[\[Alpha]]] DiracGamma
\bar{\gamma }^{\alpha }
A Dirac-slash, i.e., \gamma ^{\mu }q_{\mu}, is displayed as \gamma \cdot q.
[Momentum[q]] DiracGamma
\bar{\gamma }\cdot \overline{q}
[Momentum[q]] . DiracGamma[Momentum[p - q]] DiracGamma
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \left(\overline{p}-\overline{q}\right)\right)
[Momentum[q, D], D] DiracGamma
\gamma \cdot q
[p - q] . GS[p]
GS
[%] DiracGammaExpand
\left(\bar{\gamma }\cdot \left(\overline{p}-\overline{q}\right)\right).\left(\bar{\gamma }\cdot \overline{p}\right)
\left(\bar{\gamma }\cdot \overline{p}-\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{p}\right)
= GAD[\[Mu]] . GSD[p - q] . GSD[q] . GAD[\[Mu]] ex
\gamma ^{\mu }.(\gamma \cdot (p-q)).(\gamma \cdot q).\gamma ^{\mu }
[ex] DiracTrick
4 ((p-q)\cdot q)+(D-4) (\gamma \cdot (p-q)).(\gamma \cdot q)
[ex] DiracSimplify
D (\gamma \cdot p).(\gamma \cdot q)-D q^2-4 (\gamma \cdot p).(\gamma \cdot q)+4 (p\cdot q)
DiracGamma
may also carry Cartesian indices or appear
contracted with Cartesian momenta.
[CartesianIndex[i]] DiracGamma
\overline{\gamma }^i
[CartesianIndex[i, D - 1], D] DiracGamma
\gamma ^i
[CartesianMomentum[p]] DiracGamma
\overline{\gamma }\cdot \overline{p}
[CartesianMomentum[p, D - 1], D] DiracGamma
\gamma \cdot p
Temporal indices are represented using
ExplicitLorentzIndex[0]
[ExplicitLorentzIndex[0]] DiracGamma
\bar{\gamma }^0