FieldDerivative[f[x], x, li1, li2, ...]
is the
derivative of f[x]
with respect to space-time variables
x
and with Lorentz indices li1, li2, ...
,
where li1, li2, ...
have head
LorentzIndex
.
FieldDerivative[f[x], x, li1, li2, ...]
can be given as
FieldDerivative[f[x], x, {l1, l2, ...}]
, where l1 is li1
without the head.
FieldDerivative
is defined only for objects with head
QuantumField
. If the space-time derivative of other objects
is wanted, the corresponding rule must be specified.
Overview, FCPartialD, ExpandPartialD.
[A, {\[Mu]}][x] . QuantumField[B, {\[Nu]}][y] . QuantumField[C, {\[Rho]}][x] . QuantumField[D, {\[Sigma]}][y] QuantumField
A_{\mu }(x).B_{\nu }(y).C_{\rho }(x).D_{\sigma }(y)
[%, x, {\[Mu]}] // DotExpand FieldDerivative
A_{\mu }(x).B_{\nu }(y).\left(\left.(\partial _{\mu }C_{\rho }\right)\right)(x).D_{\sigma }(y)+\left(\left.(\partial _{\mu }A_{\mu }\right)\right)(x).B_{\nu }(y).C_{\rho }(x).D_{\sigma }(y)
[%%, y, {\[Nu]}] // DotExpand FieldDerivative
A_{\mu }(x).B_{\nu }(y).C_{\rho }(x).\left(\left.(\partial _{\nu }D_{\sigma }\right)\right)(y)+A_{\mu }(x).\left(\left.(\partial _{\nu }B_{\nu }\right)\right)(y).C_{\rho }(x).D_{\sigma }(y)