ExpandPartialD[exp]
expands noncommutative products of
QuantumField
s and partial differentiation operators in
exp
and applies the Leibniz rule.
By default the function assumes that there are no expressions outside
of exp
on which the derivatives inside exp
could act. If this is not the case, please set the options
LeftPartialD
or RIghtPartialD
to
True
.
Overview, ExplicitPartialD, LeftPartialD, LeftRightPartialD, PartialDRelations, RightPartialD, LeftRightNablaD, LeftRightNablaD2, LeftNablaD, RightNablaD.
[\[Mu]] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]]
RightPartialD
[%] ExpandPartialD
\vec{\partial }_{\mu }.A_{\mu }.A_{\nu }
A_{\mu }.\left(\partial _{\mu }A_{\nu }\right)+\left(\partial _{\mu }A_{\mu }\right).A_{\nu }
[i] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]]
RightNablaD
[%] ExpandPartialD
\vec{\nabla }^i.A_{\mu }.A_{\nu }
-A_{\mu }.\left(\partial _iA_{\nu }\right)-\left(\partial _iA_{\mu }\right).A_{\nu }
[\[Mu]] . QuantumField[A, LorentzIndex[\[Nu]]]
LeftRightPartialD
[%] ExpandPartialD
\overleftrightarrow{\partial }_{\mu }.A_{\nu }
\frac{1}{2} \left(\left(\partial _{\mu }A_{\nu }\right)-\overleftarrow{\partial }_{\mu }.A_{\nu }\right)
[i] . QuantumField[A, LorentzIndex[\[Nu]]]
LeftRightNablaD
[%] ExpandPartialD
\overleftrightarrow{\nabla }_i.A_{\nu }
\frac{1}{2} \left(\overleftarrow{\partial }_i.A_{\nu }-\left(\partial _iA_{\nu }\right)\right)
[A, LorentzIndex[\[Mu]]] . (LeftRightPartialD[OPEDelta]^2) . QuantumField[A,
QuantumField[\[Rho]]]
LorentzIndex
[%] ExpandPartialD
A_{\mu }.\overleftrightarrow{\partial }_{\Delta }^2.A_{\rho }
\frac{1}{4} \left(A_{\mu }.\left(\partial _{\Delta }\partial _{\Delta }A_{\rho }\right)-2 \left(\partial _{\Delta }A_{\mu }\right).\left(\partial _{\Delta }A_{\rho }\right)+\left(\partial _{\Delta }\partial _{\Delta }A_{\mu }\right).A_{\rho }\right)
8 LeftRightPartialD[OPEDelta]^3
8 \overleftrightarrow{\partial }_{\Delta }^3
[%] ExplicitPartialD
\left(\vec{\partial }_{\Delta }-\overleftarrow{\partial }_{\Delta }\right){}^3
[%] ExpandPartialD
-\overleftarrow{\partial }_{\Delta }.\overleftarrow{\partial }_{\Delta }.\overleftarrow{\partial }_{\Delta }+3 \overleftarrow{\partial }_{\Delta }.\overleftarrow{\partial }_{\Delta }.\vec{\partial }_{\Delta }-3 \overleftarrow{\partial }_{\Delta }.\vec{\partial }_{\Delta }.\vec{\partial }_{\Delta }+\vec{\partial }_{\Delta }.\vec{\partial }_{\Delta }.\vec{\partial }_{\Delta }
[\[Mu], \[Nu], \[Rho], \[Tau]] RightPartialD[\[Alpha], \[Mu], \[Beta], \[Nu]]
LC
[%] ExpandPartialD
\bar{\epsilon }^{\mu \nu \rho \tau } \vec{\partial }_{\alpha }.\vec{\partial }_{\mu }.\vec{\partial }_{\beta }.\vec{\partial }_{\nu }
0
[i, j, k] RightNablaD[i, j, k]
CLC
[%] ExpandPartialD
\bar{\epsilon }^{ijk} \vec{\nabla }^i.\vec{\nabla }^j.\vec{\nabla }^k
0
[CartesianIndex[i]] . QuantumField[S, x]
RightPartialD
% // ExpandPartialD
\vec{\partial }_i.S^x
\left(\partial _iS^x\right)
[{CartesianIndex[i], x}] . QuantumField[S, x]
RightPartialD
% // ExpandPartialD
\vec{\partial }_{\{i,x\}}.S^x
\left(\partial _{\{i,x\}}S^x\right)
By default the derivative won’t act on anything outside of the input
expression. But it can be made to by setting the option
RightPartialD
to True
[RightPartialD[\[Mu]] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]]] ExpandPartialD
A_{\mu }.\left(\partial _{\mu }A_{\nu }\right)+\left(\partial _{\mu }A_{\mu }\right).A_{\nu }
[RightPartialD[\[Mu]] . QuantumField[A, LorentzIndex[\[Mu]]] . QuantumField[A, LorentzIndex[\[Nu]]], RightPartialD -> True] ExpandPartialD
A_{\mu }.\left(\partial _{\mu }A_{\nu }\right)+\left(\partial _{\mu }A_{\mu }\right).A_{\nu }+A_{\mu }.A_{\nu }.\vec{\partial }_{\mu }
The same applies also to LeftPartialD
[QuantumField[A, LorentzIndex[\[Nu]]] . LeftNablaD[i]] ExpandPartialD
-\left(\partial _iA_{\nu }\right)
[QuantumField[A, LorentzIndex[\[Nu]]] . LeftNablaD[i], LeftPartialD -> True] ExpandPartialD
-\left(\partial _iA_{\nu }\right)-\overleftarrow{\partial }_i.A_{\nu }