ExplicitPartialD[exp]
inserts the definitions for
LeftRightPartialD
, LeftRightPartialD2
,
LeftRightNablaD
, LeftRightNablaD2
,
LeftNablaD
and RightNablaD
Overview, ExpandPartialD, LeftRightPartialD, LeftRightPartialD2, LeftRightNablaD, LeftRightNablaD2, LeftNablaD, RightNablaD.
[\[Mu]]
LeftRightPartialD
[%] ExplicitPartialD
\overleftrightarrow{\partial }_{\mu }
\frac{1}{2} \left(\vec{\partial }_{\mu }-\overleftarrow{\partial }_{\mu }\right)
[\[Mu]]
LeftRightPartialD2
[%] ExplicitPartialD
\overleftrightarrow{\partial }_{\mu }
\overleftarrow{\partial }_{\mu }+\vec{\partial }_{\mu }
[OPEDelta]
LeftRightPartialD
[%] ExplicitPartialD
\overleftrightarrow{\partial }_{\Delta }
\frac{1}{2} \left(\vec{\partial }_{\Delta }-\overleftarrow{\partial }_{\Delta }\right)
16 LeftRightPartialD[OPEDelta]^4
[%] ExplicitPartialD
16 \overleftrightarrow{\partial }_{\Delta }^4
\left(\vec{\partial }_{\Delta }-\overleftarrow{\partial }_{\Delta }\right){}^4
Notice that by definition \nabla^i = \partial_i = - \partial^i, where the last equality depends on the metric signature.
[i]
LeftNablaD
[%] ExplicitPartialD
\overleftarrow{\nabla }^i
-\overleftarrow{\partial }_i
[i]
RightNablaD
[%] ExplicitPartialD
\vec{\nabla }^i
-\vec{\partial }_i
[i]
LeftRightNablaD
[%] ExplicitPartialD
\overleftrightarrow{\nabla }_i
\frac{1}{2} \overleftarrow{\partial }_i-\vec{\partial }_i
[\[Mu]]
LeftRightNablaD2
[%] ExplicitPartialD
\overleftrightarrow{\nabla }_{\mu }
-\overleftarrow{\partial }_{\mu }-\vec{\partial }_{\mu }