FCPartialD[ind]
denotes a partial derivative of a field.
It is an internal object that may appear only inside a
QuantumField
.
FCPartialD[LorentzIndex[mu]]
denotes \partial_{\mu }.
FCPartialD[LorentzIndex[mu ,D]]
denotes the D-dimensional \partial_{\mu }.
FCPartialD[CartesianIndex[i]]
denotes \partial^{i} = - \nabla^i.
If you need to specify a derivative with respect to a particular
variable it also possible to use
FCPartialD[{LorentzIndex[mu],y}]
or
FCPartialD[{CartesianIndex[i],x}]
although this notation is
still somewhat experimental
Overview, ExpandPartialD, LeftPartialD, LeftRightPartialD, RightPartialD.
[A, {\[Mu]}] . LeftPartialD[\[Nu]]
QuantumField
= ExpandPartialD[%] ex
A_{\mu }.\overleftarrow{\partial }_{\nu }
\left(\partial _{\nu }A_{\mu }\right)
// StandardForm
ex
(*QuantumField[FCPartialD[LorentzIndex[\[Nu]]], A, LorentzIndex[\[Mu]]]*)
[{CartesianIndex[i], x}] . QuantumField[S, x]
RightPartialD
= ExpandPartialD[%] ex
\vec{\partial }_{\{i,x\}}.S^x
\left(\partial _{\{i,x\}}S^x\right)
// StandardForm
ex
(*QuantumField[FCPartialD[{CartesianIndex[i], x}], S, x]*)
FCPartialD
also accepts FCGV
symbols as
arguments, which can be sometimes useful to make the final expression
look nicer.
[FCPartialD[FCGV["\[Del]"]], S, x] QuantumField
\left(\nabla S^x\right)