Uncontract[exp, q1, q2, ...]
uncontracts Eps
and DiracGamma
.
Uncontract[exp, q1, q2, Pair -> {p}]
uncontracts also p \cdot q_1 and p \cdot q_2;
The option Pair -> All
uncontracts all momenta except OPEDelta
.
[\[Mu], \[Nu]][p, q]
LC
[%, p] Uncontract
\bar{\epsilon }^{\mu \nu \overline{p}\overline{q}}
\overline{p}^{\text{\$AL}(\text{\$19})} \bar{\epsilon }^{\mu \nu \;\text{\$AL}(\text{\$19})\overline{q}}
[p]
GS
[%, p] Uncontract
\bar{\gamma }\cdot \overline{p}
\bar{\gamma }^{\text{\$AL}(\text{\$20})} \overline{p}^{\text{\$AL}(\text{\$20})}
[LC[\[Mu], \[Nu]][p, q], p, q] Uncontract
\overline{p}^{\text{\$AL}(\text{\$22})} \overline{q}^{\text{\$AL}(\text{\$21})} \left(-\bar{\epsilon }^{\mu \nu \;\text{\$AL}(\text{\$21})\text{\$AL}(\text{\$22})}\right)
By default scalar products are not uncontracted.
[SP[p, q], q] Uncontract
\overline{p}\cdot \overline{q}
Use the option Pair->All
to make the function take care of the scalar products as well
[SP[p, q], q, Pair -> All] Uncontract
\overline{p}^{\text{\$AL}(\text{\$23})} \overline{q}^{\text{\$AL}(\text{\$23})}
[SP[p, q]^2, q, Pair -> All] Uncontract
\overline{p}^{\text{\$AL}(\text{\$24})} \overline{p}^{\text{\$AL}(\text{\$25})} \overline{q}^{\text{\$AL}(\text{\$24})} \overline{q}^{\text{\$AL}(\text{\$25})}
For Cartesian scalar products you need to use the option CartesianPair->All
[CSP[p, q], q, Pair -> All] Uncontract
\overline{p}\cdot \overline{q}
[CSP[p, q], q, CartesianPair -> All] Uncontract
\overline{p}^{\text{\$AL}(\text{\$26})} \overline{q}^{\text{\$AL}(\text{\$26})}