Contract
Contract[expr]
contracts pairs of Lorentz or Cartesian
indices of metric tensors, vectors and (depending on the value of the
option EpsContract
) of Levi-Civita tensors in
expr
.
For contractions of Dirac matrices with each other use
DiracSimplify
.
Contract[exp1, exp2]
contracts (exp1*exp2)
,
where exp1
and exp2
may be larger products of
sums of metric tensors and 4-vectors. This can be also useful when
evaluating polarization sums, where exp2
should be the
product (or expanded sum) of the polarization sums for the vector
bosons.
See also
Overview, Pair, CartesianPair, DiracSimplify, MomentumCombine.
Examples
MT[\[Mu], \[Nu]] FV[p, \[Mu]]
Contract[%]
pμgˉμν
pν
FV[p, \[Mu]] GA[\[Mu]]
Contract[%]
γˉμpμ
γˉ⋅p
The default dimension for a metric tensor is 4.
MT[\[Mu], \[Mu]]
Contract[%]
gˉμμ
4
A quick way to enter D-dimensional
metric tensors is given by MTD
.
MTD[\[Mu], \[Nu]] MTD[\[Mu], \[Nu]]
Contract[%]
(gμν)2
D
FV[p, \[Mu]] FV[q, \[Mu]]
Contract[% ]
pμqμ
p⋅q
FV[p - q, \[Mu]] FV[a - b, \[Mu]]
Contract[%]
(a−b)μ(p−q)μ
a⋅p−a⋅q−b⋅p+b⋅q
FVD[p - q, \[Nu]] FVD[a - b, \[Nu]]
Contract[%]
(a−b)ν(p−q)ν
a⋅p−a⋅q−b⋅p+b⋅q
LC[\[Mu], \[Nu], \[Alpha], \[Sigma]] FV[p, \[Sigma]]
Contract[%]
pσϵˉμνασ
ϵˉαμνp
LC[\[Mu], \[Nu], \[Alpha], \[Beta]] LC[\[Mu], \[Nu], \[Alpha], \[Sigma]]
Contract[%]
ϵˉμναβϵˉμνασ
−6gˉβσ
LCD[\[Mu], \[Nu], \[Alpha], \[Beta]] LCD[\[Mu], \[Nu], \[Alpha], \[Sigma]]
Contract[%] // Factor2
ϵμναβϵμνασ
(1−D)(2−D)(3−D)gβσ
Contractions of Cartesian tensors are also possible. They can live in
3, D−1
or D−4 dimensions.
KD[i, j] CV[p, i]
Contract[%]
piδˉij
pj
CV[p, i] CGA[i]
Contract[%]
γipi
γ⋅p
δˉii
3
(δˉij)2
3
CV[p - q, j] CV[a - b, j]
Contract[%]
(a−b)j(p−q)j
(a−b)⋅(p−q)
CLC[i, j, k] CV[p, k]
Contract[%]
pkϵˉijk
ϵˉijp
CLC[i, j, k] CLC[i, j, l]
Contract[%]
ϵˉijkϵˉijl
2δˉkl
CLCD[i, j, k] CLCD[i, j, l]
Contract[%] // Factor2
ϵijkϵijl
(2−D)(3−D)δkl