FeynCalc manual (development version)

 

MomentumCombine

MomentumCombine[expr] is the inverse operation to MomentumExpand and ExpandScalarProduct. MomentumCombine combines also Pairs.

See also

Overview, ExpandScalarProduct, Momentum, MomentumExpand.

Examples

Momentum[p] - 2 Momentum[q] // MomentumCombine // StandardForm

(*Momentum[p - 2 q]*)
FV[p, \[Mu]] + 2 FV[q, \[Mu]] 
 
ex = MomentumCombine[%]

\overline{p}^{\mu }+2 \overline{q}^{\mu }

\left(\overline{p}+2 \overline{q}\right)^{\mu }

ex // StandardForm

(*Pair[LorentzIndex[\[Mu]], Momentum[p + 2 q]]*)
ex // ExpandScalarProduct

\overline{p}^{\mu }+2 \overline{q}^{\mu }

3 Pair[LorentzIndex[\[Mu]], Momentum[p]] + 2 Pair[LorentzIndex[\[Mu]], Momentum[q]] 
 
ex = MomentumCombine[%]

3 \overline{p}^{\mu }+2 \overline{q}^{\mu }

\left(3 \overline{p}+2 \overline{q}\right)^{\mu }

ex // StandardForm

(*Pair[LorentzIndex[\[Mu]], Momentum[3 p + 2 q]]*)

In some cases one might need a better control over the types of expressions getting combined. For example, the following expression will not be combined by default, since the coefficients of scalar products are not numbers

DataType[a1, FCVariable] = True;
DataType[a2, FCVariable] = True;
ex = SPD[a1 p, n] + SPD[a2 p, nb]

\text{a1} (n\cdot p)+\text{a2} (\text{nb}\cdot p)

MomentumCombine[ex]

\text{a1} (n\cdot p)+\text{a2} (\text{nb}\cdot p)

Setting the option NumberQ to False we can still achieve the desired form

MomentumCombine[ex, NumberQ -> False]

(\text{a1} n+\text{a2} \;\text{nb})\cdot p

However, in the following case combing p^2 with the other two scalar products is not useful

ex = SPD[p] + SPD[a1 p, n] + SPD[a2 p, nb]

\text{a1} (n\cdot p)+\text{a2} (\text{nb}\cdot p)+p^2

MomentumCombine[ex, NumberQ -> False]

p\cdot (\text{a1} n+\text{a2} \;\text{nb}+p)

To prevent this from happening there is a somewhat hidden option "Quadratic" that can be set to False

MomentumCombine[ex, NumberQ -> False, "Quadratic" -> False]

(\text{a1} n+\text{a2} \;\text{nb})\cdot p+p^2

ex = SPD[p] + SPD[a1 p, n] + SPD[a2 p, nb] + SPD[p, l] + SPD[p, k]

\text{a1} (n\cdot p)+\text{a2} (\text{nb}\cdot p)+k\cdot p+l\cdot p+p^2

In this case we we would like to prevent the scalar products involving l and k from being combined with the rest. To that end we need to use the option Except

MomentumCombine[ex, NumberQ -> False, "Quadratic" -> False, Except -> {k, l}]

(\text{a1} n+\text{a2} \;\text{nb})\cdot p+k\cdot p+l\cdot p+p^2