ToGFAD[exp]
converts all occurring propagator types (FAD
, SFAD
, CFAD
) to GFAD
s. This is mainly useful when doing expansions in kinematic invariants, where e.g. scalar products may not be appear explicitly when using FAD
- or SFAD
-notation.
ToGFAD is the inverse operation to FromGFAD.
Overview, GFAD, SFAD, CFAD, FeynAmpDenominatorExplicit, FromGFAD
[FAD[p]] ToGFAD
\frac{1}{(p^2+i \eta )}
[FAD[p]] // StandardForm
ToGFAD
(*FeynAmpDenominator[GenericPropagatorDenominator[Pair[Momentum[p, D], Momentum[p, D]], {1, 1}]]*)
[SFAD[{p + q, m^2}]] ToGFAD
\frac{1}{(-m^2+p^2+2 (p\cdot q)+q^2+i \eta )}
[SFAD[{p + q, m^2}]] // StandardForm
ToGFAD
(*FeynAmpDenominator[GenericPropagatorDenominator[-m^2 + Pair[Momentum[p, D], Momentum[p, D]] + 2 Pair[Momentum[p, D], Momentum[q, D]] + Pair[Momentum[q, D], Momentum[q, D]], {1, 1}]]*)
[SFAD[{p + q, m^2}], FinalSubstitutions -> {SPD[q] -> 0}] ToGFAD
\frac{1}{(-m^2+p^2+2 (p\cdot q)+i \eta )}
[SFAD[{p + q, m^2}], FinalSubstitutions -> {SPD[q] -> 0}] // StandardForm
ToGFAD
(*FeynAmpDenominator[GenericPropagatorDenominator[-m^2 + Pair[Momentum[p, D], Momentum[p, D]] + 2 Pair[Momentum[p, D], Momentum[q, D]], {1, 1}]]*)