ToGFAD[exp] converts all occurring propagator types
(FAD, SFAD, CFAD) to
GFADs. This is mainly useful when doing expansions in
kinematic invariants, where e.g. scalar products may not be appear
explicitly when using FAD- or
SFAD-notation.
ToGFAD is the inverse operation to
FromGFAD.
Using the option “OnlyMixedQuadraticEikonalPropagators” one can limit the conversion to a particular type of standard and Cartesian propagator denominators that contain both quadratic and eikonal pieces. Those are the ones that usually cause issues when doing topology minimization
Overview, GFAD, SFAD, CFAD, FeynAmpDenominatorExplicit, FromGFAD
ToGFAD[FAD[p]]\frac{1}{(p^2+i \eta )}
ToGFAD[FAD[p]] // StandardForm
(*FeynAmpDenominator[GenericPropagatorDenominator[Pair[Momentum[p, D], Momentum[p, D]], {1, 1}]]*)ToGFAD[SFAD[{p + q, m^2}]]\frac{1}{(-m^2+p^2+2 (p\cdot q)+q^2+i \eta )}
ToGFAD[SFAD[{p + q, m^2}]] // StandardForm
(*FeynAmpDenominator[GenericPropagatorDenominator[-m^2 + Pair[Momentum[p, D], Momentum[p, D]] + 2 Pair[Momentum[p, D], Momentum[q, D]] + Pair[Momentum[q, D], Momentum[q, D]], {1, 1}]]*)ToGFAD[SFAD[{p + q, m^2}], FinalSubstitutions -> {SPD[q] -> 0}]\frac{1}{(-m^2+p^2+2 (p\cdot q)+i \eta )}
ToGFAD[SFAD[{p + q, m^2}], FinalSubstitutions -> {SPD[q] -> 0}] // StandardForm
(*FeynAmpDenominator[GenericPropagatorDenominator[-m^2 + Pair[Momentum[p, D], Momentum[p, D]] + 2 Pair[Momentum[p, D], Momentum[q, D]], {1, 1}]]*)This is not a mixed quadratic-eikonal propagator so it remains unchanged
ToGFAD[SFAD[{{k2, 0}, {0, 1}, 1}], "OnlyMixedQuadraticEikonalPropagators" -> True,
FCE -> True] // StandardForm
(*SFAD[{{k2, 0}, {0, 1}, 1}]*)This is a mixed propagator that will be converted to a
GFAD
ToGFAD[SFAD[{{k1, 2 gkin meta k1 . n - 2 gkin meta u0b k1 . n - meta u0b k1 . nb},
{2 gkin meta^2 u0b - 2 gkin meta^2 u0b^2, 1}, 1}],
"OnlyMixedQuadraticEikonalPropagators" -> True, FCE -> True] // StandardForm
(*GFAD[{{-2 gkin meta^2 u0b + 2 gkin meta^2 u0b^2 + SPD[k1, k1] + 2 gkin meta SPD[k1, n] - 2 gkin meta u0b SPD[k1, n] - meta u0b SPD[k1, nb], 1}, 1}]*)