CFAD[{{q1 +..., p1 . q2 +...,} {m^2, s}, n}, ...]
denotes a Cartesian propagator given by , where and are Cartesian scalar products in dimensions.
For brevity one can also use shorter forms such as CFAD[{q1+ ..., m^2}, ...]
, CFAD[{q1+ ..., m^2 , n}, ...]
, CFAD[{q1+ ..., {m^2, -1}}, ...]
, CFAD[q1,...]
etc.
If s
is not explicitly specified, its value is determined by the option EtaSign
, which has the default value -1
.
If n
is not explicitly specified, then the default value 1
is assumed. Translation into FeynCalcI internal form is performed by FeynCalcInternal
, where a CFAD
is encoded using the special head CartesianPropagatorDenominator
.
Overview, FAD, SFAD, GFAD, FeynAmpDenominator.
[{{p, 0}, m^2}] CFAD
[%] FeynAmpDenominatorExplicit
[{{p, 0}, {m^2, 1}}] CFAD
[%] FeynAmpDenominatorExplicit
[{{p, 0}, -m^2}] CFAD
[%] FeynAmpDenominatorExplicit
[{{0, p . q}, m^2}] CFAD
[%] FeynAmpDenominatorExplicit
[{{0, p . q}}] CFAD
[%] FeynAmpDenominatorExplicit