FeynAmpDenominator[...] represents the inverse
denominators of the propagators, i.e. FeynAmpDenominator[x]
is 1/x. Different propagator
denominators are represented using special heads such as
PropagatorDenominator,
StandardPropagatorDenominator,
CartesianPropagatorDenominator etc.
Overview, FAD, SFAD, CFAD, GFAD, FeynAmpDenominatorSimplify.
The legacy way to represent standard Lorentzian propagators is to use
PropagatorDenominator. Here the sign of the mass term is
fixed to be -1 and no information on
the i \eta- prescription is available.
Furthermore, this way it is not possible to enter eikonal
propagators
FeynAmpDenominator[PropagatorDenominator[Momentum[p, D], m]]\frac{1}{p^2-m^2}
FeynAmpDenominator[PropagatorDenominator[Momentum[p, D], m],
PropagatorDenominator[Momentum[p - q, D], m]]\frac{1}{\left(p^2-m^2\right).\left((p-q)^2-m^2\right)}
It is worth noting that the Euclidean mass dependence still can be introduced via a trick where the mass symbol is multiplied by the imaginary unit i
FeynAmpDenominator[PropagatorDenominator[Momentum[p, D], I m]]
% // FeynAmpDenominatorExplicit\frac{1}{p^2--m^2}
\frac{1}{m^2+p^2}
The shortcut to enter FeynAmpDenominators with
PropagatorDenominators is FAD
FAD[p]\frac{1}{p^2}
FAD[{p, m}]\frac{1}{p^2-m^2}
FAD[{p, m, 3}]\frac{1}{\left(p^2-m^2\right)^3}
FeynAmpDenominator[PropagatorDenominator[Momentum[p, D], m]] // FCE // StandardForm
(*FAD[{p, m}]*)Since version 9.3, a more flexible input is possible using
StandardPropagatorDenominator
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, -m^2, {1, 1}]]\frac{1}{(p^2-m^2+i \eta )}
The mass term can be anything, as long as it does not depend on the loop momenta
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, m^2, {1, 1}]]\frac{1}{(p^2+m^2+i \eta )}
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, -m^2, {1, 1}]]\frac{1}{(p^2-m^2+i \eta )}
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, SPD[q, q], {1, 1}]]\frac{1}{(p^2+q^2+i \eta )}
One can also change the sign of i \eta, although currently no internal functions make use of it
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, -m^2, {1, -1}]]\frac{1}{(p^2-m^2-i \eta )}
The propagator may also be raised to integer or symbolic powers
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, m^2, {3, 1}]]\frac{1}{(p^2+m^2+i \eta )^3}
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, m^2, {-2, 1}]](p^2+m^2+i \eta )^2
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, m^2, {n, 1}]](p^2+m^2+i \eta )^{-n}
Eikonal propagators are fully supported
FeynAmpDenominator[StandardPropagatorDenominator[0, Pair[Momentum[p, D], Momentum[q, D]],
-m^2, {1, 1}]]\frac{1}{(p\cdot q-m^2+i \eta )}
FeynAmpDenominator[StandardPropagatorDenominator[0, Pair[Momentum[p, D], Momentum[q, D]],
0, {1, 1}]]\frac{1}{(p\cdot q+i \eta )}
FeynCalc keeps trace of the signs of the scalar products in the eikonal propagators. This is where the i \eta- prescription may come handy
FeynAmpDenominator[StandardPropagatorDenominator[0, -Pair[Momentum[p, D], Momentum[q, D]],
0, {1, 1}]]\frac{1}{(-p\cdot q+i \eta )}
FeynAmpDenominator[StandardPropagatorDenominator[0, Pair[Momentum[p, D], Momentum[q, D]],
0, {1, -1}]]\frac{1}{(p\cdot q-i \eta )}
The shortcut to enter FeynAmpDenominators with
StandardPropagatorDenominators is SFAD
FeynAmpDenominator[StandardPropagatorDenominator[Momentum[p, D], 0, -m^2, {1, 1}]] // FCE //
StandardForm
(*SFAD[{{p, 0}, {m^2, 1}, 1}]*)Eikonal propagators are entered using the Dot
(.) as in noncommutative products
FeynAmpDenominator[StandardPropagatorDenominator[0, Pair[Momentum[p, D],
Momentum[q, D]], -m^2, {1, 1}]] // FCE // StandardForm
(*SFAD[{{0, p . q}, {m^2, 1}, 1}]*)The Cartesian version of StandardPropagatorDenominator
is called CartesianPropagatorDenominator. The syntax is
almost the same as for StandardPropagatorDenominator,
except that the momenta and scalar products must be Cartesian.
FeynAmpDenominator[CartesianPropagatorDenominator[CartesianMomentum[p, D - 1], 0, m^2,
{1, -1}]]\frac{1}{(p^2+m^2-i \eta )}
FeynAmpDenominator[CartesianPropagatorDenominator[0, CartesianPair[CartesianMomentum[p,
D - 1], CartesianMomentum[q, D - 1]], m^2, {1, -1}]]\frac{1}{(p\cdot q+m^2-i \eta )}
The shortcut to enter FeynAmpDenominators with
CartesianPropagatorDenominators is CFAD
FCE[FeynAmpDenominator[CartesianPropagatorDenominator[CartesianMomentum[p, D - 1], 0, m^2,
{1, -1}]]] // StandardForm
(*CFAD[{{p, 0}, {m^2, -1}, 1}]*)To represent completely arbitrary propagators one can use
GenericPropagatorDenominator. However, one should keep in
mind that the number of useful manipulations and automatic
simplifications available for such propagators is very limited.
FeynAmpDenominator[GenericPropagatorDenominator[x, {1, 1}]]\frac{1}{(x+i \eta )}
This is a nonlinear propagator that appears in the calculation of the QCD Energy-Energy-Correlation function
FeynAmpDenominator[GenericPropagatorDenominator[2 z Pair[Momentum[p1, D], Momentum[Q,
D]] Pair[Momentum[p2, D], Momentum[Q, D]] - Pair[Momentum[p1, D], Momentum[p2, D]], {1, 1}]]\frac{1}{(2 z (\text{p1}\cdot Q) (\text{p2}\cdot Q)-\text{p1}\cdot \;\text{p2}+i \eta )}
The shortcut to enter FeynAmpDenominators with
GenericPropagatorDenominators is GFAD
FeynAmpDenominator[GenericPropagatorDenominator[2 z Pair[Momentum[p1, D], Momentum[Q,
D]] Pair[Momentum[p2, D], Momentum[Q, D]] - Pair[Momentum[p1, D], Momentum[p2, D]], {1, 1}]] //
FCE // StandardForm
(*GFAD[{{-SPD[p1, p2] + 2 z SPD[p1, Q] SPD[p2, Q], 1}, 1}]*)