Schouten[exp]
attempts to automatically remove spurious terms in exp
by applying the Schouten’s identity.
Schouten
applies the identity for 4-vectors on at most 42 terms in a sum. If it should operate on a larger expression you can give a second argument, e.g. Schouten[expr, 4711]
which will work on sums with less than 4711 terms.
Schouten
is also an option of Contract
and DiracTrace
. It may be set to an integer indicating the maximum number of terms onto which the function Schouten
will be applied.
Overview, Contract, DiracTrace, FCSchoutenBruteForce.
[\[Mu], \[Nu], \[Rho], \[Sigma]] FV[p, \[Tau]] + LC[\[Nu], \[Rho], \[Sigma], \[Tau]] FV[p, \[Mu]] + LC[\[Rho], \[Sigma], \[Tau], \[Mu]] FV[p, \[Nu]] +
((LC[\[Sigma], \[Tau], \[Mu], \[Nu]] FV[p, \[Rho]] + LC[\[Tau], \[Mu], \[Nu], \[Rho]] FV[p, \[Sigma]]))
LC
[%] Schouten
\overline{p}^{\tau } \bar{\epsilon }^{\mu \nu \rho \sigma }+\overline{p}^{\mu } \bar{\epsilon }^{\nu \rho \sigma \tau }+\overline{p}^{\nu } \bar{\epsilon }^{\rho \sigma \tau \mu }+\overline{p}^{\rho } \bar{\epsilon }^{\sigma \tau \mu \nu }+\overline{p}^{\sigma } \bar{\epsilon }^{\tau \mu \nu \rho }
0