QuantumField
is the head of quantized fields and their derivatives.
QuantumField[par, ftype, {lorind}, {sunind}]
denotes a quantum field of type ftype
with (possible) Lorentz-indices lorind
and SU(N) indices sunind
. The optional first argument par
denotes a partial derivative acting on the field.
Overview, FeynRule, FCPartialD, ExpandPartialD.
This denotes a scalar field.
[S] QuantumField
S
Quark fields
[AntiQuarkField] QuantumField
\bar{\psi }
[QuarkField] QuantumField
\psi
This is a field with a Lorentz index.
[B, {\[Mu]}] QuantumField
B_{\mu }
Color indices should be put after the Lorentz ones.
[GaugeField, {\[Mu]}, {a}] // StandardForm
QuantumField
(*QuantumField[GaugeField, LorentzIndex[\[Mu]], SUNIndex[a]]*)
A_{\Delta}^a is a short form for \Delta ^{mu } A_{mu }^a
[A, {OPEDelta}, {a}] QuantumField
A_{\Delta }^a
The first list of indices is usually interpreted as type LorentzIndex
, except for OPEDelta
, which gets converted to type Momentum
.
[A, {OPEDelta}, {a}] // StandardForm
QuantumField
(*QuantumField[A, Momentum[OPEDelta], SUNIndex[a]]*)
Derivatives of fields are denoted as follows.
[FCPartialD[LorentzIndex[\[Mu]]], A, {\[Mu]}] QuantumField
\left.(\partial _{\mu }A_{\mu }\right)
[FCPartialD[OPEDelta], S] QuantumField
\left.(\partial _{\Delta }S\right)
[FCPartialD[OPEDelta], A, {OPEDelta}, {a}] QuantumField
\left.(\partial _{\Delta }A_{\Delta }^a\right)
[FCPartialD[OPEDelta]^OPEm, A, {OPEDelta}, {a}] QuantumField
\partial _{\Delta }^m{}^{A\Delta a}
[QuantumField[A]] === QuantumField[A] QuantumField
\text{True}