FeynCalc manual (development version)

PolarizationSum

PolarizationSum[mu, nu, ... ] represents the sum over a polarization vector and its complex conjugate with two free indices. Depending on its arguments the function returns different polarization sums for massive or massless vector bosons.

To obtain a D-dimensional polarization sum use the option Dimension.

If you need to calculate a polarization sum depending on a 4-momentum that is not on-shell, use the option VirtualBoson.

See also

Overview, Polarization, DoPolarizationSums, Uncontract.

Examples

PolarizationSum[\[Mu], \[Nu]]

-\bar{g}^{\mu \nu }

PolarizationSum[\[Mu], \[Nu], k]

\frac{\overline{k}^{\mu } \overline{k}^{\nu }}{\overline{k}^2}-\bar{g}^{\mu \nu }

PolarizationSum[\[Mu], \[Nu], k, Dimension -> D]

\frac{k^{\mu } k^{\nu }}{k^2}-g^{\mu \nu }

FCClearScalarProducts[]; SP[k] = 0; 
 
PolarizationSum[\[Mu], \[Nu], k, n]

-\frac{\overline{n}^2 \overline{k}^{\mu } \overline{k}^{\nu }}{(\overline{k}\cdot \overline{n})^2}-\bar{g}^{\mu \nu }+\frac{\overline{k}^{\nu } \overline{n}^{\mu }}{\overline{k}\cdot \overline{n}}+\frac{\overline{k}^{\mu } \overline{n}^{\nu }}{\overline{k}\cdot \overline{n}}

FCClearScalarProducts[] 
 
PolarizationSum[\[Mu], \[Nu], k, 0, Dimension -> D]

13n3qjjcr6x0f

-g^{\mu \nu }

FCClearScalarProducts[] 
 
PolarizationSum[\[Mu], \[Nu], k, 0, Dimension -> D, VirtualBoson -> True]

-g^{\mu \nu }