PauliIndexDelta[PauliIndex[i], PauliIndex[j]]
is the Kronecker-delta in the Pauli space with two explicit Pauli indices i
and j
.
Overview, PauliChain, PCHN, PauliIndex, DIDelta, PauliChainJoin, PauliChainCombine, PauliChainExpand, PauliChainFactor.
[PauliIndex[i], PauliIndex[j]] PauliIndexDelta
\delta _{ij}
[PauliIndex[i], PauliIndex[j]]^2
PauliIndexDelta
[%]
PauliChainJoin
[%%, TraceOfOne -> D] PauliChainJoin
\delta _{ij}^2
4
D
[PauliIndex[i], PauliIndex[j]] PauliIndexDelta[PauliIndex[j], PauliIndex[k]]
PauliIndexDelta
[%] PauliChainJoin
\delta _{ij} \delta _{jk}
\delta _{ik}
[PauliEta[-I], PauliIndex[i0]] PIDelta[i0, i1] // FCI // PauliChainJoin PauliChain
\left(\eta ^{\dagger }\right){}_{\text{i1}}
[PauliIndex[i2], PauliIndex[i3]] PauliIndexDelta[PauliIndex[i4], PauliIndex[i5]] PauliChain[PauliIndex[i7], PauliXi[I]] PauliChain[PauliEta[-I], PauliIndex[i0]] PauliChain[PauliSigma[CartesianIndex[a]], PauliIndex[i1], PauliIndex[i2]] PauliChain[PauliSigma[CartesianIndex[b]], PauliIndex[i5], PauliIndex[i6]] PauliChain[m + PauliSigma[CartesianMomentum[p]], PauliIndex[i3], PauliIndex[i4]]
PauliIndexDelta
[%] PauliChainJoin
(\xi )_{\text{i7}} \left(\eta ^{\dagger }\right){}_{\text{i0}} \delta _{\text{i2}\;\text{i3}} \delta _{\text{i4}\;\text{i5}} \left(\overline{\sigma }^a\right){}_{\text{i1}\;\text{i2}} \left(\overline{\sigma }^b\right){}_{\text{i5}\;\text{i6}} \left(\overline{\sigma }\cdot \overline{p}+m\right)_{\text{i3}\;\text{i4}}
(\xi )_{\text{i7}} \left(\eta ^{\dagger }\right){}_{\text{i0}} \left(\overline{\sigma }^a.\left(\overline{\sigma }\cdot \overline{p}+m\right).\overline{\sigma }^b\right){}_{\text{i1}\;\text{i6}}
[% PIDelta[i0, i1]] PauliChainJoin
(\xi )_{\text{i7}} \left(\eta ^{\dagger }.\overline{\sigma }^a.\left(\overline{\sigma }\cdot \overline{p}+m\right).\overline{\sigma }^b\right){}_{\text{i6}}
[% PIDelta[i7, i6]] PauliChainJoin
\eta ^{\dagger }.\overline{\sigma }^a.\left(\overline{\sigma }\cdot \overline{p}+m\right).\overline{\sigma }^b.\xi