PCHN[x, i, j]
is a chain of Pauli matrices x
and is transformed into PauliChain[FCI[x],PauliIndex[i],PauliIndex[j]]
by FeynCalcInternal
.
Overview, PauliChain, PauliIndex, PauliIndexDelta, PauliChainJoin, PauliChainExpand, PauliChainFactor.
A standalone Pauli matrix with open Pauli indices
[CSID[a], i, j] PCHN
\left(\sigma ^a\right){}_{ij}
A chain of Pauli matrices with open Pauli indices
[CSID[a] . CSID[b], i, j] PCHN
\left(\sigma ^a.\sigma ^b\right){}_{ij}
A single \xi ^{\dagger} spinor with an open Pauli index
[PauliXi[-I], i] PCHN
\left(\xi ^{\dagger }\right){}_i
A single \eta ^{\dagger} spinor with an open Pauli index
[PauliEta[-I], i] PCHN
\left(\eta ^{\dagger }\right){}_i
A single \xi spinor with an open Pauli index
[i, PauliXi[I]] PCHN
(\xi )_i
A single \eta spinor with an open Pauli index
[i, PauliEta[I]] PCHN
(\eta )_i
\xi ^{\dagger} spinor contracted with a chain of Pauli matrices
[CSID[a] . CSID[b], PauliXi[-I], j] PCHN
\left(\xi ^{\dagger }.\sigma ^a.\sigma ^b\right){}_j
\eta ^{\dagger} spinor contracted with a chain of Pauli matrices
[CSID[a] . CSID[b], PauliEta[-I], j] PCHN
\left(\eta ^{\dagger }.\sigma ^a.\sigma ^b\right){}_j
\xi spinor contracted with a chain of Pauli matrices
[CSID[a] . CSID[b], i, PauliXi[I]] PCHN
\left(\sigma ^a.\sigma ^b.\xi \right){}_i
\eta spinor contracted with a chain of Pauli matrices
[CSID[a] . CSID[b], i, PauliEta[I]] PCHN
\left(\sigma ^a.\sigma ^b.\eta \right){}_i