PaVeUVPart
PaVeUVPart[expr]
replaces all occurring
Passarino-Veltman functions by their explicit values, where only the UV
divergent part is preserved, while possible IR divergences and the
finite part are discarded. The function uses the algorithm from arXiv:hep-ph/0609282 by
G. Sulyok. This allows to treat Passarino-Veltman of arbitrary rank and
multiplicity
See also
Overview, PaVe, PaVeReduce.
Examples
−D−42m2
PaVeUVPart[x + y B0[SPD[p, p], 0, M^2]]
D−4Dx−4x−2y
PaVe[0, 0, {p10, p12, p20}, {m1^2, m2^2, m3^2}]
PaVeUVPart[%]
C00(p10,p12,p20,m12,m22,m32)
−2(D−4)1
PaVe[0, 0, 0, 0, 0, 0, {p10, p12, p23, 0, p20, p13}, {m1^2, m2^2, m3^2, m4^2}]
PaVeUVPart[%]
D000000(0,p10,p12,p23,p13,p20,m42,m12,m22,m32)
480(D−4)−5m12−5m22−5m32−5m42+p10+p12+p13+p20+p23
int = FVD[k + p, rho] FVD[k + p, si] FAD[k, {k + p, 0, 2}]
TID[int, k, UsePaVeBasis -> True]
% // PaVeUVPart[#, FCE -> True] &
k2.(k+p)4(k+p)rho(k+p)si
iπ2grhosiC00(0,p2,p2,0,0,0)+iπ2prhopsiC11(p2,p2,0,0,0,0)
−2(D−4)iπ2grhosi