LCD[m, n, r, s]
evaluates to D-dimensional \varepsilon^{m n r s} by virtue of applying FeynCalcInternal
.
LCD[m,...][p, ...]
evaluates to D-dimensional \epsilon ^{m \ldots \mu \ldots}p_{\mu \ldots} applying FeynCalcInternal
.
When some indices of a Levi-Civita-tensor are contracted with 4-vectors, FeynCalc suppresses explicit dummy indices by putting those vectors into the corresponding index slots. For example, \varepsilon^{p_1 p_2 p_3 p_4} (accessible via LCD[][p1,p2,p3,p4]
) correspond to \varepsilon_{\mu \nu \rho \sigma} p_1^\mu p_2^\nu p_3^\rho p_4^\sigma.
[\[Mu], \[Nu], \[Rho], \[Sigma]] LCD
\overset{\text{}}{\epsilon }^{\mu \nu \rho \sigma }
[\[Mu], \[Nu], \[Rho], \[Sigma]] // FCI // StandardForm
LCD
(*Eps[LorentzIndex[\[Mu], D], LorentzIndex[\[Nu], D], LorentzIndex[\[Rho], D], LorentzIndex[\[Sigma], D]]*)
[\[Mu], \[Nu]][p, q] LCD
\overset{\text{}}{\epsilon }^{\mu \nu pq}
[\[Mu], \[Nu]][p, q] // FCI // StandardForm
LCD
(*Eps[LorentzIndex[\[Mu], D], LorentzIndex[\[Nu], D], Momentum[p, D], Momentum[q, D]]*)
[Contract[LCD[\[Mu], \[Nu], \[Rho]][p] LCD[\[Mu], \[Nu], \[Rho]][q]]] Factor2
(1-D) (2-D) (3-D) (p\cdot q)
[\[Mu], \[Nu], \[Rho], \[Sigma]] FVD[Subscript[p, 1], \[Mu]] FVD[Subscript[p, 2], \[Nu]] FVD[Subscript[p, 3], \[Rho]] FVD[Subscript[p, 4], \[Sigma]]
LCD
[%] Contract
p_1{}^{\mu } p_2{}^{\nu } p_3{}^{\rho } p_4{}^{\sigma } \overset{\text{}}{\epsilon }^{\mu \nu \rho \sigma }
\overset{\text{}}{\epsilon }^{p_1p_2p_3p_4}