Eps[a, b, c, d]
is the head of the totally antisymmetric \epsilon (Levi-Civita) tensor. The a,b, ...
may have head LorentzIndex
or Momentum
.
When some indices of a Levi-Civita-tensor are contracted with 4-vectors, FeynCalc suppresses explicit dummy indices by putting those vectors into the corresponding index slots. For example, \varepsilon^{p_1 p_2 p_3 p_4} (accessible via LC[][p1,p2,p3,p4]
) correspond to \varepsilon_{\mu \nu \rho \sigma} p_1^\mu p_2^\nu p_3^\rho p_4^\sigma.
Overview, EpsContract, EpsEvaluate, LC, LCD.
[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]] Eps
\bar{\epsilon }^{\mu \nu \rho \sigma }
[Momentum[p], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]] Eps
\bar{\epsilon }^{\overline{p}\nu \rho \sigma }
[b, a, c, d] // StandardForm
Eps
(*Eps[b, a, c, d]*)
[ExplicitLorentzIndex[0], ExplicitLorentzIndex[1], ExplicitLorentzIndex[2],
Eps[3]] ExplicitLorentzIndex
\bar{\epsilon }^{0123}
[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]] *
Eps[LorentzIndex[\[Mu]], Momentum[Subscript[p, 1]]] Pair[LorentzIndex[\[Nu]], Momentum[Subscript[p, 2]]]*
Pair[LorentzIndex[\[Rho]], Momentum[Subscript[p, 3]]] Pair[LorentzIndex[\[Sigma]], Momentum[Subscript[p, 4]]]
Pair
[%] Contract
\overline{p}_1{}^{\mu } \overline{p}_2{}^{\nu } \overline{p}_3{}^{\rho } \overline{p}_4{}^{\sigma } \bar{\epsilon }^{\mu \nu \rho \sigma }
\bar{\epsilon }^{\overline{p}_1\overline{p}_2\overline{p}_3\overline{p}_4}
[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]]
Eps
[% %] Contract
\bar{\epsilon }^{\mu \nu \rho \sigma }
-24
[LorentzIndex[\[Mu], D], LorentzIndex[\[Nu], D], LorentzIndex[\[Rho], D], LorentzIndex[\[Sigma], D]]
Eps
[% %] // Factor2 Contract
\overset{\text{}}{\epsilon }^{\mu \nu \rho \sigma }
(1-D) (2-D) (3-D) D
= -(I/24) LCD[\[Mu], \[Nu], \[Rho], \[Alpha]] . GAD[\[Mu], \[Nu], \[Rho], \[Alpha]] // FCI ex1
-\frac{1}{24} i \overset{\text{}}{\epsilon }^{\mu \nu \rho \alpha }.\gamma ^{\mu }.\gamma ^{\nu }.\gamma ^{\rho }.\gamma ^{\alpha }
= -(I/24) LCD[\[Mu]', \[Nu]', \[Rho]', \[Alpha]'] . GAD[\[Mu]', \[Nu]', \[Rho]', \[Alpha]'] // FCI ex2
-\frac{1}{24} i \overset{\text{}}{\epsilon }^{\mu '\nu '\rho '\alpha '}.\gamma ^{\mu '}.\gamma ^{\nu '}.\gamma ^{\rho '}.\gamma ^{\alpha '}
[ex1 . ex2] // Factor2
DiracSimplify
% /. D -> 4
-\frac{1}{24} (1-D) (2-D) (3-D) D
1