Eps[a, b, c, d] is the head of the totally antisymmetric
\epsilon (Levi-Civita) tensor. The
a,b, ... may have head LorentzIndex or
Momentum.
When some indices of a Levi-Civita-tensor are contracted with
4-vectors, FeynCalc suppresses explicit dummy indices by putting those
vectors into the corresponding index slots. For example, \varepsilon^{p_1 p_2 p_3 p_4} (accessible via
LC[][p1,p2,p3,p4]) correspond to \varepsilon_{\mu \nu \rho \sigma} p_1^\mu p_2^\nu
p_3^\rho p_4^\sigma.
Overview, EpsContract, EpsEvaluate, LC, LCD.
Eps[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]]\bar{\epsilon }^{\mu \nu \rho \sigma }
Eps[Momentum[p], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]]\bar{\epsilon }^{\overline{p}\nu \rho \sigma }
Eps[b, a, c, d] // StandardForm
(*Eps[b, a, c, d]*)Eps[ExplicitLorentzIndex[0], ExplicitLorentzIndex[1], ExplicitLorentzIndex[2],
ExplicitLorentzIndex[3]]\bar{\epsilon }^{0123}
Eps[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]] *
Pair[LorentzIndex[\[Mu]], Momentum[Subscript[p, 1]]] Pair[LorentzIndex[\[Nu]], Momentum[Subscript[p, 2]]]*
Pair[LorentzIndex[\[Rho]], Momentum[Subscript[p, 3]]] Pair[LorentzIndex[\[Sigma]], Momentum[Subscript[p, 4]]]
Contract[%] \overline{p}_1{}^{\mu } \overline{p}_2{}^{\nu } \overline{p}_3{}^{\rho } \overline{p}_4{}^{\sigma } \bar{\epsilon }^{\mu \nu \rho \sigma }
\bar{\epsilon }^{\overline{p}_1\overline{p}_2\overline{p}_3\overline{p}_4}
Eps[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]]
Contract[% %]\bar{\epsilon }^{\mu \nu \rho \sigma }
-24
Eps[LorentzIndex[\[Mu], D], LorentzIndex[\[Nu], D], LorentzIndex[\[Rho], D], LorentzIndex[\[Sigma], D]]
Contract[% %] // Factor2\overset{\text{}}{\epsilon }^{\mu \nu \rho \sigma }
(1-D) (2-D) (3-D) D
ex1 = -(I/24) LCD[\[Mu], \[Nu], \[Rho], \[Alpha]] . GAD[\[Mu], \[Nu], \[Rho], \[Alpha]] // FCI-\frac{1}{24} i \overset{\text{}}{\epsilon }^{\mu \nu \rho \alpha }.\gamma ^{\mu }.\gamma ^{\nu }.\gamma ^{\rho }.\gamma ^{\alpha }
ex2 = -(I/24) LCD[\[Mu]', \[Nu]', \[Rho]', \[Alpha]'] . GAD[\[Mu]', \[Nu]', \[Rho]', \[Alpha]'] // FCI-\frac{1}{24} i \overset{\text{}}{\epsilon }^{\mu '\nu '\rho '\alpha '}.\gamma ^{\mu '}.\gamma ^{\nu '}.\gamma ^{\rho '}.\gamma ^{\alpha '}
DiracSimplify[ex1 . ex2] // Factor2
% /. D -> 4-\frac{1}{24} (1-D) (2-D) (3-D) D
1