Integrate2
is like Integrate
, but Integrate2[a_Plus, b__] := Map[Integrate2[#, b]&, a]
( more linear algebra and partial fraction decomposition is done)
Integrate2[f[x] DeltaFunction[x], x] -> f[0]
Integrate2[f[x] DeltaFunction[x0-x], x] -> f[x0]
Integrate2[f[x] DeltaFunction[a + b x], x] -> Integrate[f[x] (1/Abs[b]) DeltaFunction[a/b + x], x]
, where Abs[b] -> b
, if b
is a symbol, and if b = -c
, then Abs[-c] -> c
, i.e., the variable contained in b
is supposed to be positive.
\pi ^2 is replaced by 6 Zeta2
.
Integrate2[1/(1-y),{y,x,1}]
is interpreted as distribution, i.e. as Integrate2[-1/(1-y)],{y, 0, x}] -> Log[1-y]
.
Integrate2[1/(1-x),{x,0,1}] -> 0
Since Integrate2
does do a reordering and partial fraction decomposition before calling the integral table of Integrate3
, it will in general be slower compared to Integrate3 for sums of integrals. I.e., if the integrand has already an expanded form and if partial fraction decomposition is not necessary it is more effective to use Integrate3
.
Overview, DeltaFunction, Integrate3, Integrate5, SumS, SumT.
[Log[1 + x] Log[x]/(1 - x), {x, 0, 1}] // Timing Integrate2
\left\{0.057955,\zeta (3)-\frac{3}{2} \zeta (2) \log (2)\right\}
Since Integrate2
uses table-look-up methods it is much faster than Mathematica’s Integrate.
[PolyLog[2, x^2], {x, 0, 1}] Integrate2
\zeta (2)-4+4 \log (2)
[PolyLog[3, -x], {x, 0, 1}] Integrate2
\frac{\zeta (2)}{2}-\frac{3 \zeta (3)}{4}+1-2 \log (2)
[PolyLog[3, 1/(1 + x)], {x, 0, 1}] Integrate2
\zeta (2) (-\log (2))+\frac{3 \zeta (3)}{4}+\frac{\log ^3(2)}{3}-\log ^2(2)+2 \log (2)
[DeltaFunction[1 - x] f[x], {x, 0, 1}] Integrate2
f(1)
Integrate2
does integration in a Hadamard sense, i.e., \int _0^1 \, f(x) \, d x means actually expanding the result of \int _{\delta }^{1-\delta} \, f(x) \, dx up to \mathcal{O}(\delta ) and neglecting all \delta-dependent terms. E.g. \int_{\delta }^{1-\delta} \frac{1}{1-x} \, d x = - \log (1-x) \biggl |_{\delta }^{1-\delta } = -\log (\delta )+log (1) \Rightarrow 0
[1/(1 - x), {x, 0, 1}] Integrate2
0
In the physics literature sometimes the “+” notation is used. In FeynCalc the \left(frac{1}{1-x} \right)_{+} is represented by PlusDistribution}[1/(1-x)]
or just 1/(1-x)
[PlusDistribution[1/(1 - x)], {x, 0, 1}] Integrate2
0
[PolyLog[2, 1 - x]/(1 - x)^2, {x, 0, 1}] Integrate2
2-\zeta (2)
[(Log[x] Log[1 + x])/(1 + x), {x, 0, 1}] Integrate2
-\frac{\zeta (3)}{8}
[Log[x]^2/(1 - x), {x, 0, 1}] Integrate2
2 \zeta (3)
[PolyLog[2, -x]/(1 + x), {x, 0, 1}] Integrate2
\frac{\zeta (3)}{4}-\frac{1}{2} \zeta (2) \log (2)
[Log[x] PolyLog[2, x], {x, 0, 1}] Integrate2
3-2 \zeta (2)
[x PolyLog[3, x], {x, 0, 1}] Integrate2
-\frac{\zeta (2)}{4}+\frac{\zeta (3)}{2}+\frac{3}{16}
[(Log[x]^2 Log[1 - x])/(1 + x), {x, 0, 1}] Integrate2
\zeta (4)+\zeta (2) \log ^2(2)-4 \;\text{Li}_4\left(\frac{1}{2}\right)-\frac{\log ^4(2)}{6}
[PolyLog[2, ((x (1 - z) + z) (1 - x + x z))/z]/(1 - x + x z), {x, 0, 1}] Integrate2
\frac{2 i \pi \;\text{Li}_2(-z)}{1-z}-\frac{4 \;\text{Li}_3\left(\frac{1-z}{2}\right)}{1-z}+\frac{4 \;\text{Li}_3(1-z)}{1-z}+\frac{2 \;\text{Li}_3(-z)}{1-z}+\frac{4 \;\text{Li}_3\left(\frac{1}{z+1}\right)}{1-z}-\frac{4 \;\text{Li}_3\left(\frac{1-z}{z+1}\right)}{1-z}-\frac{4 \;\text{Li}_3\left(\frac{z+1}{2}\right)}{1-z}-\frac{2 \;\text{Li}_2(1-z) \log (z)}{1-z}-\frac{2 \;\text{Li}_2(-z) \log (z)}{1-z}+\frac{4 \;\text{Li}_2(-z) \log (1-z)}{1-z}-\frac{2 S_{12}(1-z)}{1-z}+\frac{i \pi \zeta (2)}{1-z}-\frac{\zeta (2) \log (z)}{1-z}+\frac{2 \zeta (2) \log (1-z)}{1-z}+\frac{6 \zeta (2) \log (z+1)}{1-z}-\frac{4 \zeta (2) \log (2)}{1-z}+\frac{2 \zeta (3)}{1-z}+\frac{\log ^3(z)}{6 (1-z)}+\frac{4 \log ^3(2)}{3 (1-z)}-\frac{\log (1-z) \log ^2(z)}{1-z}-\frac{\log (z+1) \log ^2(z)}{1-z}-\frac{i \pi \log ^2(z)}{2 (1-z)}-\frac{2 \log (1-z) \log ^2(z+1)}{1-z}-\frac{2 \log ^2(2) \log (1-z)}{1-z}-\frac{2 \log ^2(2) \log (z+1)}{1-z}+\frac{4 \log (1-z) \log (z+1) \log (z)}{1-z}+\frac{2 i \pi \log (z+1) \log (z)}{1-z}+\frac{4 \log (2) \log (1-z) \log (z+1)}{1-z}
Apart[Integrate2[x^(OPEm - 1) PolyLog[3, 1 - x], {x, 0, 1}], OPEm]
-\frac{\zeta (2)}{m^2}-\frac{\zeta (2)}{m-1}+\frac{\zeta (2)+\zeta (2) \left(-S_1(m-2)\right)+S_{12}(m)+\zeta (3)}{m}
[x^(OPEm - 1) Log[1 - x] Log[x] Log[1 + x]/(1 + x), {x, 0, 1}] // Simplify
Integrate2
% /. OPEm -> 2
N[%]
\frac{1}{24} (-1)^m \left(48 \zeta (4)+30 \zeta (2) \log ^2(2)+6 \zeta (2) S_{-1}^2(m-1)+18 \zeta (2) S_2(m-1)-24 \zeta (2) S_{1-1}(m-1)-12 S_{-2}(m-1) \left(\zeta (2)-\log (4) S_{-1}(m-1)-\log ^2(2)\right)-36 \zeta (2) \log (2) S_1(m-1)+12 S_{-1}(m-1) (\zeta (2) \log (8)-2 \zeta (3))+39 \zeta (3) S_1(m-1)+24 S_{-2-1-1}(m-1)+24 S_{-1-2-1}(m-1)+24 S_{-1-1-2}(m-1)+24 S_{1-21}(m-1)+24 S_{1-12}(m-1)+24 S_{2-11}(m-1)-12 \log ^2(2) S_2(m-1)+24 \log (2) S_3(m-1)-24 \log (2) S_{-21}(m-1)-24 \log (2) S_{-12}(m-1)-48 \;\text{Li}_4\left(\frac{1}{2}\right)-63 \zeta (3) \log (2)-2 \log ^4(2)\right)
\frac{1}{24} \left(48 \zeta (2)+48 \zeta (4)+30 \zeta (2) \log ^2(2)+12 \left(\zeta (2)-\log ^2(2)+\log (4)\right)-36 \zeta (2) \log (2)-48 \;\text{Li}_4\left(\frac{1}{2}\right)-12 (\zeta (2) \log (8)-2 \zeta (3))+39 \zeta (3)-63 \zeta (3) \log (2)-144-2 \log ^4(2)-12 \log ^2(2)+72 \log (2)\right)
0.0505138
[x^(OPEm - 1) (PolyLog[3, (1 - x)/(1 + x)] - PolyLog[3, -((1 - x)/(1 + x))]), {x, 0, 1}] Integrate2
\frac{3 \zeta (2) (-1)^m \log (2)}{2 m}-\frac{3 \zeta (2) \log (2)}{2 m}+\frac{\zeta (2) (-1)^m S_{-1}(m)}{m}-\frac{\zeta (2) S_{-1}(m)}{2 m}+\frac{\zeta (2) (-1)^m S_1(m)}{2 m}-\frac{\zeta (2) S_1(m)}{m}+\frac{(-1)^m S_{-3}(m)}{m}+\frac{(-1)^m S_{-2}(m) S_1(m)}{m}+\frac{S_1(m) S_2(m)}{m}+\frac{S_3(m)}{m}-\frac{(-1)^m S_{-21}(m)}{m}-\frac{S_{-1-2}(m)}{m}-\frac{(-1)^m S_{-12}(m)}{m}-\frac{S_{21}(m)}{m}-\frac{7 (-1)^m \zeta (3)}{8 m}+\frac{21 \zeta (3)}{8 m}
[OPEm, PositiveInteger]
DataType
[x^(OPEm - 1) DeltaFunction[1 - x], {x, 0, 1}] Integrate2
\text{True}
1
This is the polarized non-singlet spin splitting function whose first moment vanishes.
t = SplittingFunction[PQQNS] /. FCGV[z_] :> ToExpression[z]
-8 C_F \left(C_F-\frac{C_A}{2}\right) \left(\frac{\left(x^2+1\right) \left(-2 \zeta (2)-4 \;\text{Li}_2(-x)+\log ^2(x)-4 \log (x+1) \log (x)\right)}{x+1}+4 (1-x)+2 (x+1) \log (x)\right)+C_A C_F \left(\frac{4 \left(x^2+1\right) \log ^2(x)}{1-x}+8 \zeta (2) (x+1)+\left(\frac{536}{9}-16 \zeta (2)\right) \left(\frac{1}{1-x}\right)_++\delta (1-x) \left(\frac{88 \zeta (2)}{3}-24 \zeta (3)+\frac{17}{3}\right)+\frac{4}{9} (53-187 x)-\frac{4}{3} \left(5 x-\frac{22}{1-x}+5\right) \log (x)\right)+C_F N_f \left(-\frac{8 \left(x^2+1\right) \log (x)}{3 (1-x)}+\left(-\frac{16 \zeta (2)}{3}-\frac{2}{3}\right) \delta (1-x)+\frac{88 x}{9}-\frac{80}{9} \left(\frac{1}{1-x}\right)_+-\frac{8}{9}\right)+C_F^2 \left(-\frac{16 \left(x^2+1\right) \log (1-x) \log (x)}{1-x}+\delta (1-x) (-24 \zeta (2)+48 \zeta (3)+3)-40 (1-x)-4 (x+1) \log ^2(x)-8 \left(2 x+\frac{3}{1-x}\right) \log (x)\right)
t // Expand
8 \zeta (2) C_A C_F-\frac{16 x^2 C_A C_F \;\text{Li}_2(-x)}{x+1}-\frac{16 C_A C_F \;\text{Li}_2(-x)}{x+1}-\frac{8 \zeta (2) x^2 C_A C_F}{x+1}+\frac{4 x^2 C_A C_F \log ^2(x)}{1-x}+\frac{4 x^2 C_A C_F \log ^2(x)}{x+1}-\frac{16 x^2 C_A C_F \log (x) \log (x+1)}{x+1}+\frac{88}{3} \zeta (2) C_A C_F \delta (1-x)+\frac{17}{3} C_A C_F \delta (1-x)+8 \zeta (2) x C_A C_F-\frac{8 \zeta (2) C_A C_F}{x+1}-16 \zeta (2) \left(\frac{1}{1-x}\right)_+ C_A C_F-24 \zeta (3) C_A C_F \delta (1-x)-\frac{892}{9} x C_A C_F+\frac{536}{9} \left(\frac{1}{1-x}\right)_+ C_A C_F+\frac{4 C_A C_F \log ^2(x)}{1-x}+\frac{4 C_A C_F \log ^2(x)}{x+1}+\frac{4}{3} C_A C_F \log (x)+\frac{4}{3} x C_A C_F \log (x)+\frac{88 C_A C_F \log (x)}{3 (1-x)}-\frac{16 C_A C_F \log (x) \log (x+1)}{x+1}+\frac{356 C_A C_F}{9}-\frac{8 x^2 C_F N_f \log (x)}{3 (1-x)}-\frac{16}{3} \zeta (2) C_F N_f \delta (1-x)-\frac{2}{3} C_F N_f \delta (1-x)+\frac{88}{9} x C_F N_f-\frac{80}{9} \left(\frac{1}{1-x}\right)_+ C_F N_f-\frac{8 C_F N_f \log (x)}{3 (1-x)}-\frac{8 C_F N_f}{9}+\frac{32 x^2 C_F^2 \;\text{Li}_2(-x)}{x+1}+\frac{32 C_F^2 \;\text{Li}_2(-x)}{x+1}+\frac{16 \zeta (2) x^2 C_F^2}{x+1}-\frac{8 x^2 C_F^2 \log ^2(x)}{x+1}-\frac{16 x^2 C_F^2 \log (1-x) \log (x)}{1-x}+\frac{32 x^2 C_F^2 \log (x) \log (x+1)}{x+1}-24 \zeta (2) C_F^2 \delta (1-x)+3 C_F^2 \delta (1-x)+\frac{16 \zeta (2) C_F^2}{x+1}+48 \zeta (3) C_F^2 \delta (1-x)+72 x C_F^2-4 x C_F^2 \log ^2(x)-\frac{8 C_F^2 \log ^2(x)}{x+1}-4 C_F^2 \log ^2(x)-32 x C_F^2 \log (x)-\frac{16 C_F^2 \log (1-x) \log (x)}{1-x}-\frac{24 C_F^2 \log (x)}{1-x}-16 C_F^2 \log (x)+\frac{32 C_F^2 \log (x) \log (x+1)}{x+1}-72 C_F^2
[t, {x, 0, 1}] // Timing Integrate2
\{0.040008,0\}
Expanding t
with respect to x
yields a form already suitable for Integrate3
and therefore the following is faster:
[Expand[t, x], {x, 0, 1}] // Expand // Timing Integrate3
\{0.018181,0\}
Clear[t];
[DeltaFunction[1 - x] f[x], {x, 0, 1}] Integrate2
f(1)
[x^5 Log[1 + x]^2, {x, 0, 1}]
Integrate2
N[%]
\frac{46 \log (2)}{45}-\frac{6959}{10800}
0.0641986
NIntegrate[x^5 Log[1 + x]^2, {x, 0, 1}]
0.0641986
[x^(OPEm - 1) Log[1 + x]^2, {x, 0, 1}] Integrate2
-\frac{2 (-1)^m S_1^2(m)}{m}+\frac{(-1)^m S_1\left(\frac{m-1}{2}\right) S_1(m)}{m}-\frac{S_1\left(\frac{m-1}{2}\right) S_1(m)}{m}+\frac{(-1)^m S_1\left(\frac{m}{2}\right) S_1(m)}{m}+\frac{S_1\left(\frac{m}{2}\right) S_1(m)}{m}+\frac{(-1)^m S_2\left(\frac{m-1}{2}\right)}{2 m}-\frac{S_2\left(\frac{m-1}{2}\right)}{2 m}+\frac{(-1)^m S_2\left(\frac{m}{2}\right)}{2 m}+\frac{S_2\left(\frac{m}{2}\right)}{2 m}-\frac{2 (-1)^m S_2(m)}{m}-\frac{2 (-1)^m S_{-11}(m)}{m}+\frac{4 (-1)^m \log (2) S_1(m)}{m}-\frac{(-1)^m \log (2) S_1\left(\frac{m-1}{2}\right)}{m}+\frac{\log (2) S_1\left(\frac{m-1}{2}\right)}{m}-\frac{(-1)^m \log (2) S_1\left(\frac{m}{2}\right)}{m}-\frac{\log (2) S_1\left(\frac{m}{2}\right)}{m}-\frac{(-1)^m \log ^2(2)}{m}+\frac{\log ^2(2)}{m}