SumT[1, m]
is the alternative harmonic number \sum _{i=1}^m (-1){}^{\wedge}i/i
SumT[r, n]
represents Sum[(-1)^i/i^r, {i,1,n}]
SumT[r,s, n]
is Sum[1/k^r (-1)^j/j^s, {k, 1, n}, {j, 1, k}]
.
[1, m - 1] SumT
\tilde{S}_1(m-1)
[2, m - 1] SumT
\tilde{S}_2(m-1)
[1, m] SumT
\tilde{S}_1(m)
[1, m, Reduce -> True] SumT
\tilde{S}_1(m-1)+\frac{(-1)^m}{m}
[1, 4] SumT
-\frac{7}{12}
[1, 2, m - 1] SumT
\tilde{S}_{12}(m-1)
[1, 2, 42] SumT
-\frac{38987958697055013360489864298703621429610152138683927}{10512121660702378405316004964483761080879190528000000}
[1, 4] SumT
-\frac{7}{12}
[-1, 4] SumS
-\frac{7}{12}
[1, 2, 12] SumT
-\frac{57561743656913}{21300003648000}
[1, -2, 42] SumS
-\frac{38987958697055013360489864298703621429610152138683927}{10512121660702378405316004964483761080879190528000000}
Array[SumT, 6]
\left\{-1,-\frac{5}{8},-\frac{179}{216},-\frac{1207}{1728},-\frac{170603}{216000},-\frac{155903}{216000}\right\}
Array[SumS[-2, 1, #1] &, 6]
\left\{-1,-\frac{5}{8},-\frac{179}{216},-\frac{1207}{1728},-\frac{170603}{216000},-\frac{155903}{216000}\right\}