GluonPropagator[p, {mu, a}, {nu, b}]
or GluonPropagator[p, mu, a, nu, b]
yields the gluon propagator.
GluonPropagator[p, {mu}, {nu}]
or GluonPropagator[p, mu, nu]
omits the SUNDelta
.
GP
can be used as an abbreviation of GluonPropagator
.
The gauge and the dimension are determined by the options Gauge
and Dimension
. The following settings of Gauge
are possible:
1
for the Feynman gaugealpha
for the general covariant gauge{Momentum[n] ,1}
for the axial gaugeOverview, GluonSelfEnergy, GluonVertex, GluonGhostVertex, GhostPropagator, GluonGhostVertex.
[p, \[Mu], a, \[Nu], b]
GluonPropagator
[%] Explicit
\Pi _{ab}^{\mu \nu }(p)
-\frac{i \delta ^{ab} g^{\mu \nu }}{p^2}
[p, \[Mu], a, \[Nu], b, Gauge -> \[Alpha]]
GP
[%] Explicit
\Pi _{ab}^{\mu \nu }(p)
\frac{i \delta ^{ab} \left(\frac{(1-\alpha ) p^{\mu } p^{\nu }}{p^2}-g^{\mu \nu }\right)}{p^2}
[p, \[Mu], a, \[Nu], b, Gauge -> {Momentum[n], 1}, Explicit -> True] GluonPropagator
\frac{i \delta ^{ab} \left(\frac{p^{\mu } \overline{n}^{\nu }+p^{\nu } \overline{n}^{\mu }}{(\overline{n}\cdot \overline{p}+i \eta )}-\frac{\overline{n}^2 p^{\mu } p^{\nu }-p^2 \overline{n}^{\mu } \overline{n}^{\nu }}{(\overline{n}\cdot \overline{p}+i \eta )^{21}}-g^{\mu \nu }\right)}{p^2}
[p, \[Mu], \[Nu]] GP
\Pi _g^{\mu \nu }(p)
[%] Explicit
-\frac{i g^{\mu \nu }}{p^2}
[p, \[Mu], a, \[Nu], b, CounterTerm -> 1] // Explicit GluonPropagator
-\frac{i C_A g_s^2 S_n \delta ^{ab} \left(\frac{11 p^{\mu } p^{\nu }}{3}-\frac{19}{6} p^2 g^{\mu \nu }\right)}{\varepsilon }
[p, \[Mu], a, \[Nu], b, CounterTerm -> 2] // Explicit GluonPropagator
-\frac{i C_A g_s^2 S_n \delta ^{ab} \left(-\frac{1}{6} p^2 g^{\mu \nu }-\frac{1}{3} p^{\mu } p^{\nu }\right)}{\varepsilon }
[p, \[Mu], a, \[Nu], b, CounterTerm -> 3] // Explicit GluonPropagator
-\frac{2 i T_f g_s^2 S_n \delta ^{ab} \left(\frac{4}{3} p^2 g^{\mu \nu }-\frac{4 p^{\mu } p^{\nu }}{3}\right)}{\varepsilon }
[p, \[Mu], a, \[Nu], b, CounterTerm -> 4] // Explicit GluonPropagator
-\frac{i C_A g_s^2 S_n \delta ^{ab} \left(\frac{10 p^{\mu } p^{\nu }}{3}-\frac{10}{3} p^2 g^{\mu \nu }\right)}{\varepsilon }
[p, \[Mu], a, \[Nu], b, CounterTerm -> 5] // Explicit GluonPropagator
\frac{i C_A g_s^2 S_n \delta ^{ab} \left(\frac{10 p^{\mu } p^{\nu }}{3}-\frac{10}{3} p^2 g^{\mu \nu }\right)}{\varepsilon }+\frac{i T_f g_s^2 S_n \delta ^{ab} \left(\frac{4}{3} p^2 g^{\mu \nu }-\frac{4 p^{\mu } p^{\nu }}{3}\right)}{\varepsilon }