GenPaVe[i, j, ..., {{0, m0}, {Momentum[p1], m1}, {Momentum[p2], m2}, ...]
denotes the invariant (and scalar) Passarino-Veltman integrals, i.e. the coefficient functions of the tensor integral decomposition. In contrast to PaVe
which uses the LoopTools convention, masses and external momenta in GenPaVe
are written in the same order as they appear in the original tensor integral, i.e. FAD[{q,m0},{q-p1,m1},{q-p2,m2},...]
.
[q, \[Mu]] FVD[q, \[Nu]] FAD[{q, m0}, {q + p1, m1}, {q + p2, m2}]/(I*Pi^2)
FVD
[%, q, UsePaVeBasis -> True]
TID
[%%, q, UsePaVeBasis -> True, GenPaVe -> True] TID
-\frac{i q^{\mu } q^{\nu }}{\pi ^2 \left(q^2-\text{m0}^2\right).\left((\text{p1}+q)^2-\text{m1}^2\right).\left((\text{p2}+q)^2-\text{m2}^2\right)}
g^{\mu \nu } \;\text{C}_{00}\left(\text{p1}^2,\text{p2}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{m1}^2,\text{m0}^2,\text{m2}^2\right)+\text{p1}^{\mu } \;\text{p1}^{\nu } \;\text{C}_{11}\left(\text{p1}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{p2}^2,\text{m0}^2,\text{m1}^2,\text{m2}^2\right)+\text{p2}^{\mu } \;\text{p2}^{\nu } \;\text{C}_{11}\left(\text{p2}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{p1}^2,\text{m0}^2,\text{m2}^2,\text{m1}^2\right)+\left(\text{p1}^{\nu } \;\text{p2}^{\mu }+\text{p1}^{\mu } \;\text{p2}^{\nu }\right) \;\text{C}_{12}\left(\text{p1}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{p2}^2,\text{m0}^2,\text{m1}^2,\text{m2}^2\right)
g^{\mu \nu } \;\text{GenPaVe}\left(\{0,0\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)+\text{p1}^{\mu } \;\text{p1}^{\nu } \;\text{GenPaVe}\left(\{1,1\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)+\text{p2}^{\mu } \;\text{p2}^{\nu } \;\text{GenPaVe}\left(\{2,2\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)+\left(\text{p1}^{\nu } \;\text{p2}^{\mu }+\text{p1}^{\mu } \;\text{p2}^{\nu }\right) \;\text{GenPaVe}\left(\{1,2\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)