GSLRD[p,n,nb]
denotes the perpendicular component in the lightcone decomposition of the slashed Dirac matrix (\gamma \cdot p) along the vectors n
and nb
in D dimensions. It corresponds to (\gamma \cdot p)_{\perp}.
If one omits n
and nb
, the program will use default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
Overview, DiracGamma, GALPD, GALND, GALRD, GSLPD, GSLND.
[p, n, nb] GSLRD
\gamma \cdot p_{\perp }
StandardForm[GSLRD[p, n, nb] // FCI]
(*DiracGamma[LightConePerpendicularComponent[Momentum[p, D], Momentum[n, D], Momentum[nb, D]], D]*)
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
[p, n, nb] . GSLPD[q, n, nb] // DiracSimplify GSLRD
-\frac{1}{4} n^2 (\text{nb}\cdot q) (\gamma \cdot \;\text{nb}).\left(\gamma \cdot p_{\perp }\right)-\frac{1}{4} (n\cdot \;\text{nb}) (\text{nb}\cdot q) (\gamma \cdot n).\left(\gamma \cdot p_{\perp }\right)
[]
FCClearScalarProducts[n] = 0;
SPD[nb] = 0;
SPD[n, nb] = 2; SPD
[p, n, nb] . GSLPD[q, n, nb] // DiracSimplify GSLRD
-\frac{1}{2} (\text{nb}\cdot q) (\gamma \cdot n).\left(\gamma \cdot p_{\perp }\right)
[] FCClearScalarProducts