GALPD[mu,n,nb]
denotes the positive component in the lightcone decomposition of the Dirac matrix \gamma^{\mu } along the vectors n
and nb
in D-dimensions. It corresponds to \frac{1}{2} \bar{n}^{\mu} (\gamma \cdot n).
If one omits n
and nb
, the program will use default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
Overview, DiracGamma, GALND, GALRD, GSLPD, GSLND, GSLRD.
[\[Mu], n, nb] GALPD
\frac{1}{2} \;\text{nb}^{\mu } \gamma \cdot n
StandardForm[GALPD[\[Mu], n, nb] // FCI]
\frac{1}{2} \;\text{DiracGamma}[\text{Momentum}[n,D],D] \;\text{Pair}[\text{LorentzIndex}[\mu ,D],\text{Momentum}[\text{nb},D]]
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
[\[Mu], n, nb] . GALPD[\[Nu], n, nb] // DiracSimplify GALPD
\frac{1}{4} n^2 \;\text{nb}^{\mu } \;\text{nb}^{\nu }
[]
FCClearScalarProducts[n] = 0;
SPD[nb] = 0;
SPD[n, nb] = 2; SPD
[\[Mu], n, nb] . GALPD[\[Nu], n, nb] // DiracSimplify GALPD
0
[] FCClearScalarProducts