GSE[p]
can be used as input for a D-4-dimensional \gamma \cdot p = \gamma^\mu p_\mu and is transformed into DiracGamma[Momentum[p,D-4],D-4]
by FeynCalcInternal
(FCI
). GSE[p,q, ...]
is a short form for GSE[p].GSE[q]. ...
.
Overview, DiracGamma, GA, GAD, GSD.
[p] GSE
\hat{\gamma }\cdot \hat{p}
[p] // FCI // StandardForm
GSE
(*DiracGamma[Momentum[p, -4 + D], -4 + D]*)
[p, q, r, s] GSE
\left(\hat{\gamma }\cdot \hat{p}\right).\left(\hat{\gamma }\cdot \hat{q}\right).\left(\hat{\gamma }\cdot \hat{r}\right).\left(\hat{\gamma }\cdot \hat{s}\right)
[p, q, r, s] // StandardForm
GSE
(*GSE[p] . GSE[q] . GSE[r] . GSE[s]*)
[q] . (GSE[p] + m) . GSE[q] GSE
\left(\hat{\gamma }\cdot \hat{q}\right).\left(m+\hat{\gamma }\cdot \hat{p}\right).\left(\hat{\gamma }\cdot \hat{q}\right)
In order to use Dirac algebra with D-4 dimensional objects you need to activate the t’Hooft-Veltman-Breitenlohner-Maison scheme first
["NDR"];
FCSetDiracGammaScheme
[GSE[q] . GS[q] . GSE[q]] DiracSimplify
\text{\$Aborted}
["BMHV"];
FCSetDiracGammaScheme
[GSE[q] . GS[q] . GSE[q]] DiracSimplify
\hat{q}^2 \left(-\left(\bar{\gamma }\cdot \overline{q}\right)\right)
["NDR"]; FCSetDiracGammaScheme